import fitz from fastapi import FastAPI, File, UploadFile, Form from fastapi.responses import JSONResponse from transformers import pipeline from PIL import Image from io import BytesIO from starlette.middleware import Middleware from starlette.middleware.cors import CORSMiddleware from pdf2image import convert_from_bytes from pydub import AudioSegment import numpy as np app = FastAPI() # Set up CORS middleware origins = ["*"] # or specify your list of allowed origins app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) nlp_qa = pipeline("document-question-answering", model="jinhybr/OCR-DocVQA-Donut") nlp_qa_v2 = pipeline("document-question-answering", model="faisalraza/layoutlm-invoices") nlp_qa_v3 = pipeline("question-answering", model="deepset/roberta-base-squad2") nlp_classification = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english") nlp_classification_v2 = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment-latest") nlp_speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-base") description = """ ## Image-based Document QA This API performs document question answering using a LayoutLMv2-based model. ### Endpoints: - **POST /uploadfile/:** Upload an image file to extract text and answer provided questions. - **POST /pdfQA/:** Provide a PDF file to extract text and answer provided questions. """ app = FastAPI(docs_url="/", description=description) @app.post("/uploadfile/", description="Upload an image file to extract text and answer provided questions.") async def perform_document_qa( file: UploadFile = File(...), questions: str = Form(...), ): try: # Read the uploaded file as bytes contents = await file.read() # Open the image using PIL image = Image.open(BytesIO(contents)) # Perform document question answering for each question using LayoutLMv2-based model answers_dict = {} for question in questions.split(','): result = nlp_qa( image, question.strip() ) # Access the 'answer' key from the first item in the result list answer = result[0]['answer'] # Format the question as a string without extra characters formatted_question = question.strip("[]") answers_dict[formatted_question] = answer return answers_dict except Exception as e: return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500) @app.post("/uploadfilev2/", description="Upload an image file to extract text and answer provided questions.") async def perform_document_qa( file: UploadFile = File(...), questions: str = Form(...), ): try: # Read the uploaded file as bytes contents = await file.read() # Open the image using PIL image = Image.open(BytesIO(contents)) # Perform document question answering for each question using LayoutLMv2-based model answers_dict = {} for question in questions.split(','): result = nlp_qa_v2( image, question.strip() ) # Access the 'answer' key from the first item in the result list answer = result[0]['answer'] # Format the question as a string without extra characters formatted_question = question.strip("[]") answers_dict[formatted_question] = answer return answers_dict except Exception as e: return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500) @app.post("/uploadfilev3/", description="Upload an image file to extract text and answer provided questions.") async def perform_document_qa( context: str = Form(...), question: str = Form(...), ): try: QA_input = { 'question': question, 'context': context } res = nlp_qa_v3(QA_input) return res['answer'] except Exception as e: return JSONResponse(content=f"Error processing file: {str(e)}", status_code=500) @app.post("/classify/", description="Classify the provided text.") async def classify_text(text: str = Form(...)): try: # Perform text classification using the pipeline result = nlp_classification(text) # Return the classification result return result except Exception as e: return JSONResponse(content=f"Error classifying text: {str(e)}", status_code=500) @app.post("/test_classify/", description="Classify the provided text with positive, neutral, or negative sentiment.") async def test_classify_text(text: str = Form(...)): try: # Perform text classification using the updated model that returns positive, neutral, or negative result = nlp_classification_v2(text) # Print the raw label for debugging purposes (can be removed later) raw_label = result[0]['label'] print(f"Raw label from model: {raw_label}") # Map the model labels to human-readable format label_map = { "negative": "Negative", "neutral": "Neutral", "positive": "Positive" } # Get the readable label from the map formatted_label = label_map.get(raw_label, "Unknown") return {"label": formatted_label, "score": result[0]['score']} except Exception as e: return JSONResponse(content=f"Error classifying text: {str(e)}", status_code=500) @app.post("/transcribe_and_match/", description="Transcribe audio and match responses to form fields.") async def transcribe_and_match( file: UploadFile = File(...), field_data: str = Form(...) ): try: # Step 1: Read and convert the audio file contents = await file.read() audio = AudioSegment.from_file(BytesIO(contents)) # Convert AudioSegment to a NumPy array # First, export to raw audio format and then load into NumPy raw_audio = BytesIO() audio.export(raw_audio, format="wav") raw_audio.seek(0) # Convert audio to samples as NumPy array (convert to float64) samples = np.array(audio.get_array_of_samples()).astype(np.float64) # Step 2: Use the speech-to-text model (expecting NumPy array of float64) transcription_result = nlp_speech_to_text(samples) transcription_text = transcription_result['text'] # Step 3: Parse the field_data (which contains field names/IDs) import json fields = json.loads(field_data) # Step 4: Find the matching field for the transcription field_matches = {} for field in fields: field_label = field.get("field_label", "").lower() field_id = field.get("field_id", "") # Simple matching: if the transcribed text contains the field label (or something close) if field_label in transcription_text.lower(): field_matches[field_id] = transcription_text # Step 5: Return transcription + matched fields return { "transcription": transcription_text, "matched_fields": field_matches } except Exception as e: return JSONResponse(content=f"Error processing audio or matching fields: {str(e)}", status_code=500) # Set up CORS middleware origins = ["*"] # or specify your list of allowed origins app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], )