File size: 9,028 Bytes
956bfd7
130c731
 
956bfd7
843f710
956bfd7
 
 
 
 
 
 
 
 
130c731
956bfd7
 
 
 
 
 
 
 
 
 
130c731
956bfd7
 
130c731
956bfd7
 
 
 
 
 
 
130c731
 
 
956bfd7
 
 
130c731
956bfd7
 
 
130c731
956bfd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130c731
956bfd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130c731
 
 
 
 
956bfd7
130c731
956bfd7
130c731
 
 
 
 
 
 
 
 
 
 
956bfd7
 
 
130c731
6532741
130c731
956bfd7
130c731
956bfd7
 
 
 
130c731
 
 
956bfd7
 
 
 
 
 
 
 
 
 
130c731
956bfd7
130c731
956bfd7
 
130c731
 
956bfd7
130c731
956bfd7
 
130c731
 
956bfd7
130c731
956bfd7
 
130c731
 
 
 
 
 
 
956bfd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130c731
956bfd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130c731
 
956bfd7
 
130c731
 
 
 
956bfd7
 
130c731
 
 
 
956bfd7
130c731
956bfd7
 
130c731
956bfd7
 
 
 
130c731
 
956bfd7
 
843293d
6943eee
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import gradio as gr
import spaces
import torch
from PIL import Image

from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
    CLIPImageProcessor,
    CLIPVisionModelWithProjection,
    CLIPTextModel,
    CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler, AutoencoderKL
from typing import List

import os
from transformers import AutoTokenizer
import numpy as np
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
from torchvision.transforms.functional import to_pil_image

# Function to convert PIL image to binary mask
def pil_to_binary_mask(pil_image, threshold=0):
    np_image = np.array(pil_image)
    grayscale_image = Image.fromarray(np_image).convert("L")
    binary_mask = np.array(grayscale_image) > threshold
    mask = np.zeros(binary_mask.shape, dtype=np.uint8)
    for i in range(binary_mask.shape[0]):
        for j in range(binary_mask.shape[1]):
            if binary_mask[i, j]:
                mask[i, j] = 1
    mask = (mask * 255).astype(np.uint8)
    output_mask = Image.fromarray(mask)
    return output_mask

# Base path setup
base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')

# Model loading
unet = UNet2DConditionModel.from_pretrained(
    base_path,
    subfolder="unet",
    torch_dtype=torch.float16,
)
unet.requires_grad_(False)
tokenizer_one = AutoTokenizer.from_pretrained(
    base_path,
    subfolder="tokenizer",
    use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
    base_path,
    subfolder="tokenizer_2",
    use_fast=False,
)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")

text_encoder_one = CLIPTextModel.from_pretrained(
    base_path,
    subfolder="text_encoder",
    torch_dtype=torch.float16,
)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
    base_path,
    subfolder="text_encoder_2",
    torch_dtype=torch.float16,
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
    base_path,
    subfolder="image_encoder",
    torch_dtype=torch.float16,
)
vae = AutoencoderKL.from_pretrained(base_path,
                                    subfolder="vae",
                                    torch_dtype=torch.float16,
)

# "stabilityai/stable-diffusion-xl-base-1.0",
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
    base_path,
    subfolder="unet_encoder",
    torch_dtype=torch.float16,
)

parsing_model = Parsing(0)
openpose_model = OpenPose(0)

UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
tensor_transfrom = transforms.Compose(
    [
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5]),
    ]
)

# Tryon pipeline setup
pipe = TryonPipeline.from_pretrained(
    base_path,
    unet=unet,
    vae=vae,
    feature_extractor=CLIPImageProcessor(),
    text_encoder=text_encoder_one,
    text_encoder_2=text_encoder_two,
    tokenizer=tokenizer_one,
    tokenizer_2=tokenizer_two,
    scheduler=noise_scheduler,
    image_encoder=image_encoder,
    torch_dtype=torch.float16,
)
pipe.unet_encoder = UNet_Encoder

# Start try-on function
@spaces.GPU
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed):
    device = "cuda"

    openpose_model.preprocessor.body_estimation.model.to(device)
    pipe.to(device)
    pipe.unet_encoder.to(device)

    garm_img = garm_img.convert("RGB").resize((768, 1024))
    human_img_orig = dict["background"].convert("RGB")

    if is_checked_crop:
        width, height = human_img_orig.size
        target_width = int(min(width, height * (3 / 4)))
        target_height = int(min(height, width * (4 / 3)))
        left = (width - target_width) / 2
        top = (height - target_height) / 2
        right = (width + target_width) / 2
        bottom = (height + target_height) / 2
        cropped_img = human_img_orig.crop((left, top, right, bottom))
        crop_size = cropped_img.size
        human_img = cropped_img.resize((768, 1024))
    else:
        human_img = human_img_orig.resize((768, 1024))

    if is_checked:
        keypoints = openpose_model(human_img.resize((384, 512)))
        model_parse, _ = parsing_model(human_img.resize((384, 512)))
        mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
        mask = mask.resize((768, 1024))
    else:
        mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
    mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
    mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)

    human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
    human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")

    args = apply_net.create_argument_parser().parse_args(
        ('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda')
    )
    pose_img = args.func(args, human_img_arg)
    pose_img = pose_img[:, :, ::-1]
    pose_img = Image.fromarray(pose_img).resize((768, 1024))

    with torch.no_grad():
        with torch.cuda.amp.autocast():
            with torch.no_grad():
                prompt = "model is wearing " + garment_des
                negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
                with torch.inference_mode():
                    (
                        prompt_embeds,
                        negative_prompt_embeds,
                        pooled_prompt_embeds,
                        negative_pooled_prompt_embeds,
                    ) = pipe.encode_prompt(
                        prompt,
                        num_images_per_prompt=1,
                        do_classifier_free_guidance=True,
                        negative_prompt=negative_prompt,
                    )

                    prompt = "a photo of " + garment_des
                    negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
                    if not isinstance(prompt, List):
                        prompt = [prompt] * 1
                    if not isinstance(negative_prompt, List):
                        negative_prompt = [negative_prompt] * 1
                    with torch.inference_mode():
                        (
                            prompt_embeds_c,
                            _,
                            _,
                            _,
                        ) = pipe.encode_prompt(
                            prompt,
                            num_images_per_prompt=1,
                            do_classifier_free_guidance=False,
                            negative_prompt=negative_prompt,
                        )

                    pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16)
                    garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16)
                    generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
                    images = pipe(
                        prompt_embeds=prompt_embeds.to(device, torch.float16),
                        negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
                        pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
                        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
                        num_inference_steps=denoise_steps,
                        generator=generator,
                        strength=1.0,
                        pose_img=pose_img.to(device, torch.float16),
                        text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
                        cloth=garm_tensor.to(device, torch.float16),
                        mask_image=mask,
                        image=human_img,
                        height=1024,
                        width=768,
                        ip_adapter_image=garm_img.resize((768, 1024)),
                        guidance_scale=2.0,
                    )[0]

    if is_checked_crop:
        out_img = images[0].resize(crop_size)
        human_img_orig.paste(out_img, (int(left), int(top)))
        return human_img_orig, mask_gray
    else:
        return images[0], mask_gray

# Gradio Interface
def greet():
    return "Hello, welcome to the virtual try-on demo!"

demo = gr.Interface(fn=greet, inputs=[], outputs=[])
demo.launch()