Spaces:
No application file
No application file
ML-Motivators
commited on
uploads files
Browse files- ip_adapter/__init__.py +11 -0
- ip_adapter/__pycache__/__init__.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/attention_processor.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/ip_adapter.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/resampler.cpython-310.pyc +0 -0
- ip_adapter/__pycache__/utils.cpython-310.pyc +0 -0
- ip_adapter/attention_processor.py +0 -0
- ip_adapter/ip_adapter.py +907 -0
- ip_adapter/resampler.py +188 -0
- ip_adapter/test_resampler.py +44 -0
- ip_adapter/utils.py +5 -0
ip_adapter/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .ip_adapter import IPAdapter, IPAdapterPlus, IPAdapterPlusXL, IPAdapterXL, IPAdapterFull,IPAdapterPlus_Lora,IPAdapterPlus_Lora_up
|
2 |
+
|
3 |
+
__all__ = [
|
4 |
+
"IPAdapter",
|
5 |
+
"IPAdapterPlus",
|
6 |
+
"IPAdapterPlusXL",
|
7 |
+
"IPAdapterXL",
|
8 |
+
"IPAdapterFull",
|
9 |
+
"IPAdapterPlus_Lora",
|
10 |
+
'IPAdapterPlus_Lora_up',
|
11 |
+
]
|
ip_adapter/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (362 Bytes). View file
|
|
ip_adapter/__pycache__/attention_processor.cpython-310.pyc
ADDED
Binary file (30.8 kB). View file
|
|
ip_adapter/__pycache__/ip_adapter.cpython-310.pyc
ADDED
Binary file (14.9 kB). View file
|
|
ip_adapter/__pycache__/resampler.cpython-310.pyc
ADDED
Binary file (4.77 kB). View file
|
|
ip_adapter/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (360 Bytes). View file
|
|
ip_adapter/attention_processor.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ip_adapter/ip_adapter.py
ADDED
@@ -0,0 +1,907 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from diffusers import StableDiffusionPipeline
|
6 |
+
from diffusers.pipelines.controlnet import MultiControlNetModel
|
7 |
+
from PIL import Image
|
8 |
+
from safetensors import safe_open
|
9 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
10 |
+
|
11 |
+
from .utils import is_torch2_available
|
12 |
+
|
13 |
+
if is_torch2_available():
|
14 |
+
from .attention_processor import (
|
15 |
+
AttnProcessor2_0 as AttnProcessor,
|
16 |
+
)
|
17 |
+
from .attention_processor import (
|
18 |
+
CNAttnProcessor2_0 as CNAttnProcessor,
|
19 |
+
)
|
20 |
+
from .attention_processor import (
|
21 |
+
IPAttnProcessor2_0 as IPAttnProcessor,
|
22 |
+
)
|
23 |
+
from .attention_processor import IPAttnProcessor2_0_Lora
|
24 |
+
# else:
|
25 |
+
# from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor
|
26 |
+
from .resampler import Resampler
|
27 |
+
from diffusers.models.lora import LoRALinearLayer
|
28 |
+
|
29 |
+
|
30 |
+
class ImageProjModel(torch.nn.Module):
|
31 |
+
"""Projection Model"""
|
32 |
+
|
33 |
+
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
|
34 |
+
super().__init__()
|
35 |
+
|
36 |
+
self.cross_attention_dim = cross_attention_dim
|
37 |
+
self.clip_extra_context_tokens = clip_extra_context_tokens
|
38 |
+
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
|
39 |
+
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
40 |
+
|
41 |
+
def forward(self, image_embeds):
|
42 |
+
embeds = image_embeds
|
43 |
+
clip_extra_context_tokens = self.proj(embeds).reshape(
|
44 |
+
-1, self.clip_extra_context_tokens, self.cross_attention_dim
|
45 |
+
)
|
46 |
+
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
47 |
+
return clip_extra_context_tokens
|
48 |
+
|
49 |
+
|
50 |
+
class MLPProjModel(torch.nn.Module):
|
51 |
+
"""SD model with image prompt"""
|
52 |
+
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
|
53 |
+
super().__init__()
|
54 |
+
|
55 |
+
self.proj = torch.nn.Sequential(
|
56 |
+
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
|
57 |
+
torch.nn.GELU(),
|
58 |
+
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
|
59 |
+
torch.nn.LayerNorm(cross_attention_dim)
|
60 |
+
)
|
61 |
+
|
62 |
+
def forward(self, image_embeds):
|
63 |
+
clip_extra_context_tokens = self.proj(image_embeds)
|
64 |
+
return clip_extra_context_tokens
|
65 |
+
|
66 |
+
|
67 |
+
class IPAdapter:
|
68 |
+
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4):
|
69 |
+
self.device = device
|
70 |
+
self.image_encoder_path = image_encoder_path
|
71 |
+
self.ip_ckpt = ip_ckpt
|
72 |
+
self.num_tokens = num_tokens
|
73 |
+
|
74 |
+
self.pipe = sd_pipe.to(self.device)
|
75 |
+
self.set_ip_adapter()
|
76 |
+
|
77 |
+
# load image encoder
|
78 |
+
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
|
79 |
+
self.device, dtype=torch.float16
|
80 |
+
)
|
81 |
+
self.clip_image_processor = CLIPImageProcessor()
|
82 |
+
# image proj model
|
83 |
+
self.image_proj_model = self.init_proj()
|
84 |
+
|
85 |
+
self.load_ip_adapter()
|
86 |
+
|
87 |
+
def init_proj(self):
|
88 |
+
image_proj_model = ImageProjModel(
|
89 |
+
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
90 |
+
clip_embeddings_dim=self.image_encoder.config.projection_dim,
|
91 |
+
clip_extra_context_tokens=self.num_tokens,
|
92 |
+
).to(self.device, dtype=torch.float16)
|
93 |
+
return image_proj_model
|
94 |
+
|
95 |
+
def set_ip_adapter(self):
|
96 |
+
unet = self.pipe.unet
|
97 |
+
attn_procs = {}
|
98 |
+
for name in unet.attn_processors.keys():
|
99 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
100 |
+
if name.startswith("mid_block"):
|
101 |
+
hidden_size = unet.config.block_out_channels[-1]
|
102 |
+
elif name.startswith("up_blocks"):
|
103 |
+
block_id = int(name[len("up_blocks.")])
|
104 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
105 |
+
elif name.startswith("down_blocks"):
|
106 |
+
block_id = int(name[len("down_blocks.")])
|
107 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
108 |
+
if cross_attention_dim is None:
|
109 |
+
attn_procs[name] = AttnProcessor()
|
110 |
+
else:
|
111 |
+
attn_procs[name] = IPAttnProcessor(
|
112 |
+
hidden_size=hidden_size,
|
113 |
+
cross_attention_dim=cross_attention_dim,
|
114 |
+
scale=1.0,
|
115 |
+
num_tokens=self.num_tokens,
|
116 |
+
).to(self.device, dtype=torch.float16)
|
117 |
+
unet.set_attn_processor(attn_procs)
|
118 |
+
if hasattr(self.pipe, "controlnet"):
|
119 |
+
if isinstance(self.pipe.controlnet, MultiControlNetModel):
|
120 |
+
for controlnet in self.pipe.controlnet.nets:
|
121 |
+
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
122 |
+
else:
|
123 |
+
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
124 |
+
|
125 |
+
def load_ip_adapter(self):
|
126 |
+
if self.ip_ckpt is not None:
|
127 |
+
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
|
128 |
+
state_dict = {"image_proj": {}, "ip_adapter": {}}
|
129 |
+
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
|
130 |
+
for key in f.keys():
|
131 |
+
if key.startswith("image_proj."):
|
132 |
+
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
|
133 |
+
elif key.startswith("ip_adapter."):
|
134 |
+
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
135 |
+
else:
|
136 |
+
state_dict = torch.load(self.ip_ckpt, map_location="cpu")
|
137 |
+
self.image_proj_model.load_state_dict(state_dict["image_proj"])
|
138 |
+
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
|
139 |
+
ip_layers.load_state_dict(state_dict["ip_adapter"])
|
140 |
+
|
141 |
+
|
142 |
+
# def load_ip_adapter(self):
|
143 |
+
# if self.ip_ckpt is not None:
|
144 |
+
# if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
|
145 |
+
# state_dict = {"image_proj_model": {}, "ip_adapter": {}}
|
146 |
+
# with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
|
147 |
+
# for key in f.keys():
|
148 |
+
# if key.startswith("image_proj_model."):
|
149 |
+
# state_dict["image_proj_model"][key.replace("image_proj_model.", "")] = f.get_tensor(key)
|
150 |
+
# elif key.startswith("ip_adapter."):
|
151 |
+
# state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
152 |
+
# else:
|
153 |
+
# state_dict = torch.load(self.ip_ckpt, map_location="cpu")
|
154 |
+
|
155 |
+
# tmp1 = {}
|
156 |
+
# for k,v in state_dict.items():
|
157 |
+
# if 'image_proj_model' in k:
|
158 |
+
# tmp1[k.replace('image_proj_model.','')] = v
|
159 |
+
# self.image_proj_model.load_state_dict(tmp1, strict=True)
|
160 |
+
# # ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
|
161 |
+
# tmp2 = {}
|
162 |
+
# for k,v in state_dict.ites():
|
163 |
+
# if 'adapter_mode' in k:
|
164 |
+
# tmp1[k] = v
|
165 |
+
|
166 |
+
# print(ip_layers.state_dict())
|
167 |
+
# ip_layers.load_state_dict(state_dict,strict=False)
|
168 |
+
|
169 |
+
|
170 |
+
@torch.inference_mode()
|
171 |
+
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
|
172 |
+
if pil_image is not None:
|
173 |
+
if isinstance(pil_image, Image.Image):
|
174 |
+
pil_image = [pil_image]
|
175 |
+
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
176 |
+
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
|
177 |
+
else:
|
178 |
+
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
|
179 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
180 |
+
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
|
181 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
182 |
+
|
183 |
+
def get_image_embeds_train(self, pil_image=None, clip_image_embeds=None):
|
184 |
+
if pil_image is not None:
|
185 |
+
if isinstance(pil_image, Image.Image):
|
186 |
+
pil_image = [pil_image]
|
187 |
+
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
188 |
+
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float32)).image_embeds
|
189 |
+
else:
|
190 |
+
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float32)
|
191 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
192 |
+
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
|
193 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
194 |
+
|
195 |
+
|
196 |
+
def set_scale(self, scale):
|
197 |
+
for attn_processor in self.pipe.unet.attn_processors.values():
|
198 |
+
if isinstance(attn_processor, IPAttnProcessor):
|
199 |
+
attn_processor.scale = scale
|
200 |
+
|
201 |
+
def generate(
|
202 |
+
self,
|
203 |
+
pil_image=None,
|
204 |
+
clip_image_embeds=None,
|
205 |
+
prompt=None,
|
206 |
+
negative_prompt=None,
|
207 |
+
scale=1.0,
|
208 |
+
num_samples=4,
|
209 |
+
seed=None,
|
210 |
+
guidance_scale=7.5,
|
211 |
+
num_inference_steps=50,
|
212 |
+
**kwargs,
|
213 |
+
):
|
214 |
+
self.set_scale(scale)
|
215 |
+
|
216 |
+
if pil_image is not None:
|
217 |
+
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
218 |
+
else:
|
219 |
+
num_prompts = clip_image_embeds.size(0)
|
220 |
+
|
221 |
+
if prompt is None:
|
222 |
+
prompt = "best quality, high quality"
|
223 |
+
if negative_prompt is None:
|
224 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
225 |
+
|
226 |
+
if not isinstance(prompt, List):
|
227 |
+
prompt = [prompt] * num_prompts
|
228 |
+
if not isinstance(negative_prompt, List):
|
229 |
+
negative_prompt = [negative_prompt] * num_prompts
|
230 |
+
|
231 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
|
232 |
+
pil_image=pil_image, clip_image_embeds=clip_image_embeds
|
233 |
+
)
|
234 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
235 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
236 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
237 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
238 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
239 |
+
|
240 |
+
with torch.inference_mode():
|
241 |
+
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
|
242 |
+
prompt,
|
243 |
+
device=self.device,
|
244 |
+
num_images_per_prompt=num_samples,
|
245 |
+
do_classifier_free_guidance=True,
|
246 |
+
negative_prompt=negative_prompt,
|
247 |
+
)
|
248 |
+
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
|
249 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
|
250 |
+
|
251 |
+
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
252 |
+
images = self.pipe(
|
253 |
+
prompt_embeds=prompt_embeds,
|
254 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
255 |
+
guidance_scale=guidance_scale,
|
256 |
+
num_inference_steps=num_inference_steps,
|
257 |
+
generator=generator,
|
258 |
+
**kwargs,
|
259 |
+
).images
|
260 |
+
|
261 |
+
return images
|
262 |
+
|
263 |
+
|
264 |
+
class IPAdapterXL(IPAdapter):
|
265 |
+
"""SDXL"""
|
266 |
+
|
267 |
+
def generate_test(
|
268 |
+
self,
|
269 |
+
pil_image,
|
270 |
+
prompt=None,
|
271 |
+
negative_prompt=None,
|
272 |
+
scale=1.0,
|
273 |
+
num_samples=4,
|
274 |
+
seed=None,
|
275 |
+
num_inference_steps=30,
|
276 |
+
**kwargs,
|
277 |
+
):
|
278 |
+
self.set_scale(scale)
|
279 |
+
|
280 |
+
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
281 |
+
|
282 |
+
if prompt is None:
|
283 |
+
prompt = "best quality, high quality"
|
284 |
+
if negative_prompt is None:
|
285 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
286 |
+
|
287 |
+
if not isinstance(prompt, List):
|
288 |
+
prompt = [prompt] * num_prompts
|
289 |
+
if not isinstance(negative_prompt, List):
|
290 |
+
negative_prompt = [negative_prompt] * num_prompts
|
291 |
+
|
292 |
+
|
293 |
+
with torch.inference_mode():
|
294 |
+
(
|
295 |
+
prompt_embeds,
|
296 |
+
negative_prompt_embeds,
|
297 |
+
pooled_prompt_embeds,
|
298 |
+
negative_pooled_prompt_embeds,
|
299 |
+
) = self.pipe.encode_prompt(
|
300 |
+
prompt,
|
301 |
+
num_images_per_prompt=num_samples,
|
302 |
+
do_classifier_free_guidance=True,
|
303 |
+
negative_prompt=negative_prompt,
|
304 |
+
)
|
305 |
+
|
306 |
+
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
307 |
+
images = self.pipe(
|
308 |
+
prompt_embeds=prompt_embeds,
|
309 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
310 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
311 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
312 |
+
num_inference_steps=num_inference_steps,
|
313 |
+
generator=generator,
|
314 |
+
**kwargs,
|
315 |
+
).images
|
316 |
+
|
317 |
+
|
318 |
+
# with torch.autocast("cuda"):
|
319 |
+
# images = self.pipe(
|
320 |
+
# prompt_embeds=prompt_embeds,
|
321 |
+
# negative_prompt_embeds=negative_prompt_embeds,
|
322 |
+
# pooled_prompt_embeds=pooled_prompt_embeds,
|
323 |
+
# negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
324 |
+
# num_inference_steps=num_inference_steps,
|
325 |
+
# generator=generator,
|
326 |
+
# **kwargs,
|
327 |
+
# ).images
|
328 |
+
|
329 |
+
return images
|
330 |
+
|
331 |
+
|
332 |
+
def generate(
|
333 |
+
self,
|
334 |
+
pil_image,
|
335 |
+
prompt=None,
|
336 |
+
negative_prompt=None,
|
337 |
+
scale=1.0,
|
338 |
+
num_samples=4,
|
339 |
+
seed=None,
|
340 |
+
num_inference_steps=30,
|
341 |
+
**kwargs,
|
342 |
+
):
|
343 |
+
self.set_scale(scale)
|
344 |
+
|
345 |
+
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
346 |
+
|
347 |
+
if prompt is None:
|
348 |
+
prompt = "best quality, high quality"
|
349 |
+
if negative_prompt is None:
|
350 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
351 |
+
|
352 |
+
if not isinstance(prompt, List):
|
353 |
+
prompt = [prompt] * num_prompts
|
354 |
+
if not isinstance(negative_prompt, List):
|
355 |
+
negative_prompt = [negative_prompt] * num_prompts
|
356 |
+
|
357 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
|
358 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
359 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
360 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
361 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
362 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
363 |
+
|
364 |
+
with torch.inference_mode():
|
365 |
+
(
|
366 |
+
prompt_embeds,
|
367 |
+
negative_prompt_embeds,
|
368 |
+
pooled_prompt_embeds,
|
369 |
+
negative_pooled_prompt_embeds,
|
370 |
+
) = self.pipe.encode_prompt(
|
371 |
+
prompt,
|
372 |
+
num_images_per_prompt=num_samples,
|
373 |
+
do_classifier_free_guidance=True,
|
374 |
+
negative_prompt=negative_prompt,
|
375 |
+
)
|
376 |
+
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
|
377 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
|
378 |
+
|
379 |
+
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
380 |
+
images = self.pipe(
|
381 |
+
prompt_embeds=prompt_embeds,
|
382 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
383 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
384 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
385 |
+
num_inference_steps=num_inference_steps,
|
386 |
+
generator=generator,
|
387 |
+
**kwargs,
|
388 |
+
).images
|
389 |
+
|
390 |
+
|
391 |
+
# with torch.autocast("cuda"):
|
392 |
+
# images = self.pipe(
|
393 |
+
# prompt_embeds=prompt_embeds,
|
394 |
+
# negative_prompt_embeds=negative_prompt_embeds,
|
395 |
+
# pooled_prompt_embeds=pooled_prompt_embeds,
|
396 |
+
# negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
397 |
+
# num_inference_steps=num_inference_steps,
|
398 |
+
# generator=generator,
|
399 |
+
# **kwargs,
|
400 |
+
# ).images
|
401 |
+
|
402 |
+
return images
|
403 |
+
|
404 |
+
|
405 |
+
class IPAdapterPlus(IPAdapter):
|
406 |
+
"""IP-Adapter with fine-grained features"""
|
407 |
+
|
408 |
+
def generate(
|
409 |
+
self,
|
410 |
+
pil_image=None,
|
411 |
+
clip_image_embeds=None,
|
412 |
+
prompt=None,
|
413 |
+
negative_prompt=None,
|
414 |
+
scale=1.0,
|
415 |
+
num_samples=4,
|
416 |
+
seed=None,
|
417 |
+
guidance_scale=7.5,
|
418 |
+
num_inference_steps=50,
|
419 |
+
**kwargs,
|
420 |
+
):
|
421 |
+
self.set_scale(scale)
|
422 |
+
|
423 |
+
if pil_image is not None:
|
424 |
+
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
425 |
+
else:
|
426 |
+
num_prompts = clip_image_embeds.size(0)
|
427 |
+
|
428 |
+
if prompt is None:
|
429 |
+
prompt = "best quality, high quality"
|
430 |
+
if negative_prompt is None:
|
431 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
432 |
+
|
433 |
+
if not isinstance(prompt, List):
|
434 |
+
prompt = [prompt] * num_prompts
|
435 |
+
if not isinstance(negative_prompt, List):
|
436 |
+
negative_prompt = [negative_prompt] * num_prompts
|
437 |
+
|
438 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
|
439 |
+
pil_image=pil_image, clip_image=clip_image_embeds
|
440 |
+
)
|
441 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
442 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
443 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
444 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
445 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
446 |
+
|
447 |
+
with torch.inference_mode():
|
448 |
+
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
|
449 |
+
prompt,
|
450 |
+
device=self.device,
|
451 |
+
num_images_per_prompt=num_samples,
|
452 |
+
do_classifier_free_guidance=True,
|
453 |
+
negative_prompt=negative_prompt,
|
454 |
+
)
|
455 |
+
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
|
456 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
|
457 |
+
|
458 |
+
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
459 |
+
images = self.pipe(
|
460 |
+
prompt_embeds=prompt_embeds,
|
461 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
462 |
+
guidance_scale=guidance_scale,
|
463 |
+
num_inference_steps=num_inference_steps,
|
464 |
+
generator=generator,
|
465 |
+
**kwargs,
|
466 |
+
).images
|
467 |
+
|
468 |
+
return images
|
469 |
+
|
470 |
+
|
471 |
+
def init_proj(self):
|
472 |
+
image_proj_model = Resampler(
|
473 |
+
dim=self.pipe.unet.config.cross_attention_dim,
|
474 |
+
depth=4,
|
475 |
+
dim_head=64,
|
476 |
+
heads=12,
|
477 |
+
num_queries=self.num_tokens,
|
478 |
+
embedding_dim=self.image_encoder.config.hidden_size,
|
479 |
+
output_dim=self.pipe.unet.config.cross_attention_dim,
|
480 |
+
ff_mult=4,
|
481 |
+
).to(self.device, dtype=torch.float16)
|
482 |
+
return image_proj_model
|
483 |
+
|
484 |
+
@torch.inference_mode()
|
485 |
+
def get_image_embeds(self, pil_image=None, clip_image=None, uncond= None):
|
486 |
+
if pil_image is not None:
|
487 |
+
if isinstance(pil_image, Image.Image):
|
488 |
+
pil_image = [pil_image]
|
489 |
+
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
490 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
491 |
+
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
492 |
+
else:
|
493 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
494 |
+
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
495 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
496 |
+
uncond_clip_image_embeds = self.image_encoder(
|
497 |
+
torch.zeros_like(clip_image), output_hidden_states=True
|
498 |
+
).hidden_states[-2]
|
499 |
+
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
500 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
501 |
+
|
502 |
+
|
503 |
+
|
504 |
+
|
505 |
+
class IPAdapterPlus_Lora(IPAdapter):
|
506 |
+
"""IP-Adapter with fine-grained features"""
|
507 |
+
|
508 |
+
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, rank=32):
|
509 |
+
self.rank = rank
|
510 |
+
super().__init__(sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens)
|
511 |
+
|
512 |
+
|
513 |
+
def generate(
|
514 |
+
self,
|
515 |
+
pil_image=None,
|
516 |
+
clip_image_embeds=None,
|
517 |
+
prompt=None,
|
518 |
+
negative_prompt=None,
|
519 |
+
scale=1.0,
|
520 |
+
num_samples=4,
|
521 |
+
seed=None,
|
522 |
+
guidance_scale=7.5,
|
523 |
+
num_inference_steps=50,
|
524 |
+
**kwargs,
|
525 |
+
):
|
526 |
+
self.set_scale(scale)
|
527 |
+
|
528 |
+
if pil_image is not None:
|
529 |
+
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
530 |
+
else:
|
531 |
+
num_prompts = clip_image_embeds.size(0)
|
532 |
+
|
533 |
+
if prompt is None:
|
534 |
+
prompt = "best quality, high quality"
|
535 |
+
if negative_prompt is None:
|
536 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
537 |
+
|
538 |
+
if not isinstance(prompt, List):
|
539 |
+
prompt = [prompt] * num_prompts
|
540 |
+
if not isinstance(negative_prompt, List):
|
541 |
+
negative_prompt = [negative_prompt] * num_prompts
|
542 |
+
|
543 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
|
544 |
+
pil_image=pil_image, clip_image=clip_image_embeds
|
545 |
+
)
|
546 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
547 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
548 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
549 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
550 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
551 |
+
|
552 |
+
with torch.inference_mode():
|
553 |
+
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
|
554 |
+
prompt,
|
555 |
+
device=self.device,
|
556 |
+
num_images_per_prompt=num_samples,
|
557 |
+
do_classifier_free_guidance=True,
|
558 |
+
negative_prompt=negative_prompt,
|
559 |
+
)
|
560 |
+
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
|
561 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
|
562 |
+
|
563 |
+
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
564 |
+
images = self.pipe(
|
565 |
+
prompt_embeds=prompt_embeds,
|
566 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
567 |
+
guidance_scale=guidance_scale,
|
568 |
+
num_inference_steps=num_inference_steps,
|
569 |
+
generator=generator,
|
570 |
+
**kwargs,
|
571 |
+
).images
|
572 |
+
|
573 |
+
return images
|
574 |
+
|
575 |
+
|
576 |
+
def init_proj(self):
|
577 |
+
image_proj_model = Resampler(
|
578 |
+
dim=self.pipe.unet.config.cross_attention_dim,
|
579 |
+
depth=4,
|
580 |
+
dim_head=64,
|
581 |
+
heads=12,
|
582 |
+
num_queries=self.num_tokens,
|
583 |
+
embedding_dim=self.image_encoder.config.hidden_size,
|
584 |
+
output_dim=self.pipe.unet.config.cross_attention_dim,
|
585 |
+
ff_mult=4,
|
586 |
+
).to(self.device, dtype=torch.float16)
|
587 |
+
return image_proj_model
|
588 |
+
|
589 |
+
@torch.inference_mode()
|
590 |
+
def get_image_embeds(self, pil_image=None, clip_image=None, uncond= None):
|
591 |
+
if pil_image is not None:
|
592 |
+
if isinstance(pil_image, Image.Image):
|
593 |
+
pil_image = [pil_image]
|
594 |
+
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
595 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
596 |
+
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
597 |
+
else:
|
598 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
599 |
+
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
600 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
601 |
+
uncond_clip_image_embeds = self.image_encoder(
|
602 |
+
torch.zeros_like(clip_image), output_hidden_states=True
|
603 |
+
).hidden_states[-2]
|
604 |
+
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
605 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
606 |
+
|
607 |
+
def set_ip_adapter(self):
|
608 |
+
unet = self.pipe.unet
|
609 |
+
attn_procs = {}
|
610 |
+
unet_sd = unet.state_dict()
|
611 |
+
|
612 |
+
for attn_processor_name, attn_processor in unet.attn_processors.items():
|
613 |
+
# Parse the attention module.
|
614 |
+
cross_attention_dim = None if attn_processor_name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
615 |
+
if attn_processor_name.startswith("mid_block"):
|
616 |
+
hidden_size = unet.config.block_out_channels[-1]
|
617 |
+
elif attn_processor_name.startswith("up_blocks"):
|
618 |
+
block_id = int(attn_processor_name[len("up_blocks.")])
|
619 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
620 |
+
elif attn_processor_name.startswith("down_blocks"):
|
621 |
+
block_id = int(attn_processor_name[len("down_blocks.")])
|
622 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
623 |
+
if cross_attention_dim is None:
|
624 |
+
attn_procs[attn_processor_name] = AttnProcessor()
|
625 |
+
else:
|
626 |
+
layer_name = attn_processor_name.split(".processor")[0]
|
627 |
+
weights = {
|
628 |
+
"to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"],
|
629 |
+
"to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"],
|
630 |
+
}
|
631 |
+
attn_procs[attn_processor_name] = IPAttnProcessor2_0_Lora(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, num_tokens=self.num_tokens)
|
632 |
+
attn_procs[attn_processor_name].load_state_dict(weights,strict=False)
|
633 |
+
|
634 |
+
attn_module = unet
|
635 |
+
for n in attn_processor_name.split(".")[:-1]:
|
636 |
+
attn_module = getattr(attn_module, n)
|
637 |
+
|
638 |
+
attn_module.q_lora = LoRALinearLayer(in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=self.rank)
|
639 |
+
attn_module.k_lora = LoRALinearLayer(in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=self.rank)
|
640 |
+
attn_module.v_lora = LoRALinearLayer(in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=self.rank)
|
641 |
+
attn_module.out_lora = LoRALinearLayer(in_features=attn_module.to_out[0].in_features, out_features=attn_module.to_out[0].out_features, rank=self.rank)
|
642 |
+
|
643 |
+
unet.set_attn_processor(attn_procs)
|
644 |
+
if hasattr(self.pipe, "controlnet"):
|
645 |
+
if isinstance(self.pipe.controlnet, MultiControlNetModel):
|
646 |
+
for controlnet in self.pipe.controlnet.nets:
|
647 |
+
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
648 |
+
else:
|
649 |
+
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
650 |
+
|
651 |
+
|
652 |
+
|
653 |
+
class IPAdapterPlus_Lora_up(IPAdapter):
|
654 |
+
"""IP-Adapter with fine-grained features"""
|
655 |
+
|
656 |
+
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, rank=32):
|
657 |
+
self.rank = rank
|
658 |
+
super().__init__(sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens)
|
659 |
+
|
660 |
+
|
661 |
+
def generate(
|
662 |
+
self,
|
663 |
+
pil_image=None,
|
664 |
+
clip_image_embeds=None,
|
665 |
+
prompt=None,
|
666 |
+
negative_prompt=None,
|
667 |
+
scale=1.0,
|
668 |
+
num_samples=4,
|
669 |
+
seed=None,
|
670 |
+
guidance_scale=7.5,
|
671 |
+
num_inference_steps=50,
|
672 |
+
**kwargs,
|
673 |
+
):
|
674 |
+
self.set_scale(scale)
|
675 |
+
|
676 |
+
if pil_image is not None:
|
677 |
+
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
678 |
+
else:
|
679 |
+
num_prompts = clip_image_embeds.size(0)
|
680 |
+
|
681 |
+
if prompt is None:
|
682 |
+
prompt = "best quality, high quality"
|
683 |
+
if negative_prompt is None:
|
684 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
685 |
+
|
686 |
+
if not isinstance(prompt, List):
|
687 |
+
prompt = [prompt] * num_prompts
|
688 |
+
if not isinstance(negative_prompt, List):
|
689 |
+
negative_prompt = [negative_prompt] * num_prompts
|
690 |
+
|
691 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
|
692 |
+
pil_image=pil_image, clip_image=clip_image_embeds
|
693 |
+
)
|
694 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
695 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
696 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
697 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
698 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
699 |
+
|
700 |
+
with torch.inference_mode():
|
701 |
+
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
|
702 |
+
prompt,
|
703 |
+
device=self.device,
|
704 |
+
num_images_per_prompt=num_samples,
|
705 |
+
do_classifier_free_guidance=True,
|
706 |
+
negative_prompt=negative_prompt,
|
707 |
+
)
|
708 |
+
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
|
709 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
|
710 |
+
|
711 |
+
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
712 |
+
images = self.pipe(
|
713 |
+
prompt_embeds=prompt_embeds,
|
714 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
715 |
+
guidance_scale=guidance_scale,
|
716 |
+
num_inference_steps=num_inference_steps,
|
717 |
+
generator=generator,
|
718 |
+
**kwargs,
|
719 |
+
).images
|
720 |
+
|
721 |
+
return images
|
722 |
+
|
723 |
+
|
724 |
+
def init_proj(self):
|
725 |
+
image_proj_model = Resampler(
|
726 |
+
dim=self.pipe.unet.config.cross_attention_dim,
|
727 |
+
depth=4,
|
728 |
+
dim_head=64,
|
729 |
+
heads=12,
|
730 |
+
num_queries=self.num_tokens,
|
731 |
+
embedding_dim=self.image_encoder.config.hidden_size,
|
732 |
+
output_dim=self.pipe.unet.config.cross_attention_dim,
|
733 |
+
ff_mult=4,
|
734 |
+
).to(self.device, dtype=torch.float16)
|
735 |
+
return image_proj_model
|
736 |
+
|
737 |
+
@torch.inference_mode()
|
738 |
+
def get_image_embeds(self, pil_image=None, clip_image=None, uncond= None):
|
739 |
+
if pil_image is not None:
|
740 |
+
if isinstance(pil_image, Image.Image):
|
741 |
+
pil_image = [pil_image]
|
742 |
+
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
743 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
744 |
+
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
745 |
+
else:
|
746 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
747 |
+
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
748 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
749 |
+
uncond_clip_image_embeds = self.image_encoder(
|
750 |
+
torch.zeros_like(clip_image), output_hidden_states=True
|
751 |
+
).hidden_states[-2]
|
752 |
+
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
753 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
754 |
+
|
755 |
+
def set_ip_adapter(self):
|
756 |
+
unet = self.pipe.unet
|
757 |
+
attn_procs = {}
|
758 |
+
unet_sd = unet.state_dict()
|
759 |
+
|
760 |
+
for attn_processor_name, attn_processor in unet.attn_processors.items():
|
761 |
+
# Parse the attention module.
|
762 |
+
cross_attention_dim = None if attn_processor_name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
763 |
+
if attn_processor_name.startswith("mid_block"):
|
764 |
+
hidden_size = unet.config.block_out_channels[-1]
|
765 |
+
elif attn_processor_name.startswith("up_blocks"):
|
766 |
+
block_id = int(attn_processor_name[len("up_blocks.")])
|
767 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
768 |
+
elif attn_processor_name.startswith("down_blocks"):
|
769 |
+
block_id = int(attn_processor_name[len("down_blocks.")])
|
770 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
771 |
+
if cross_attention_dim is None:
|
772 |
+
attn_procs[attn_processor_name] = AttnProcessor()
|
773 |
+
else:
|
774 |
+
layer_name = attn_processor_name.split(".processor")[0]
|
775 |
+
weights = {
|
776 |
+
"to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"],
|
777 |
+
"to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"],
|
778 |
+
}
|
779 |
+
attn_procs[attn_processor_name] = IPAttnProcessor2_0_Lora(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, num_tokens=self.num_tokens)
|
780 |
+
attn_procs[attn_processor_name].load_state_dict(weights,strict=False)
|
781 |
+
|
782 |
+
attn_module = unet
|
783 |
+
for n in attn_processor_name.split(".")[:-1]:
|
784 |
+
attn_module = getattr(attn_module, n)
|
785 |
+
|
786 |
+
|
787 |
+
if "up_blocks" in attn_processor_name:
|
788 |
+
attn_module.q_lora = LoRALinearLayer(in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=self.rank)
|
789 |
+
attn_module.k_lora = LoRALinearLayer(in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=self.rank)
|
790 |
+
attn_module.v_lora = LoRALinearLayer(in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=self.rank)
|
791 |
+
attn_module.out_lora = LoRALinearLayer(in_features=attn_module.to_out[0].in_features, out_features=attn_module.to_out[0].out_features, rank=self.rank)
|
792 |
+
|
793 |
+
|
794 |
+
|
795 |
+
unet.set_attn_processor(attn_procs)
|
796 |
+
if hasattr(self.pipe, "controlnet"):
|
797 |
+
if isinstance(self.pipe.controlnet, MultiControlNetModel):
|
798 |
+
for controlnet in self.pipe.controlnet.nets:
|
799 |
+
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
800 |
+
else:
|
801 |
+
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
802 |
+
|
803 |
+
|
804 |
+
|
805 |
+
class IPAdapterFull(IPAdapterPlus):
|
806 |
+
"""IP-Adapter with full features"""
|
807 |
+
|
808 |
+
def init_proj(self):
|
809 |
+
image_proj_model = MLPProjModel(
|
810 |
+
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
811 |
+
clip_embeddings_dim=self.image_encoder.config.hidden_size,
|
812 |
+
).to(self.device, dtype=torch.float16)
|
813 |
+
return image_proj_model
|
814 |
+
|
815 |
+
|
816 |
+
class IPAdapterPlusXL(IPAdapter):
|
817 |
+
"""SDXL"""
|
818 |
+
|
819 |
+
def init_proj(self):
|
820 |
+
image_proj_model = Resampler(
|
821 |
+
dim=1280,
|
822 |
+
depth=4,
|
823 |
+
dim_head=64,
|
824 |
+
heads=20,
|
825 |
+
num_queries=self.num_tokens,
|
826 |
+
embedding_dim=self.image_encoder.config.hidden_size,
|
827 |
+
output_dim=self.pipe.unet.config.cross_attention_dim,
|
828 |
+
ff_mult=4,
|
829 |
+
).to(self.device, dtype=torch.float16)
|
830 |
+
return image_proj_model
|
831 |
+
|
832 |
+
@torch.inference_mode()
|
833 |
+
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
|
834 |
+
if pil_image is not None:
|
835 |
+
if isinstance(pil_image, Image.Image):
|
836 |
+
pil_image = [pil_image]
|
837 |
+
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
838 |
+
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
839 |
+
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
840 |
+
else:
|
841 |
+
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
|
842 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
843 |
+
uncond_clip_image_embeds = self.image_encoder(
|
844 |
+
torch.zeros_like(clip_image), output_hidden_states=True
|
845 |
+
).hidden_states[-2]
|
846 |
+
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
847 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
848 |
+
|
849 |
+
def generate(
|
850 |
+
self,
|
851 |
+
pil_image,
|
852 |
+
prompt=None,
|
853 |
+
negative_prompt=None,
|
854 |
+
scale=1.0,
|
855 |
+
num_samples=4,
|
856 |
+
seed=None,
|
857 |
+
num_inference_steps=30,
|
858 |
+
**kwargs,
|
859 |
+
):
|
860 |
+
self.set_scale(scale)
|
861 |
+
|
862 |
+
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
863 |
+
|
864 |
+
if prompt is None:
|
865 |
+
prompt = "best quality, high quality"
|
866 |
+
if negative_prompt is None:
|
867 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
868 |
+
|
869 |
+
if not isinstance(prompt, List):
|
870 |
+
prompt = [prompt] * num_prompts
|
871 |
+
if not isinstance(negative_prompt, List):
|
872 |
+
negative_prompt = [negative_prompt] * num_prompts
|
873 |
+
|
874 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
|
875 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
876 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
877 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
878 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
879 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
880 |
+
|
881 |
+
with torch.inference_mode():
|
882 |
+
(
|
883 |
+
prompt_embeds,
|
884 |
+
negative_prompt_embeds,
|
885 |
+
pooled_prompt_embeds,
|
886 |
+
negative_pooled_prompt_embeds,
|
887 |
+
) = self.pipe.encode_prompt(
|
888 |
+
prompt,
|
889 |
+
num_images_per_prompt=num_samples,
|
890 |
+
do_classifier_free_guidance=True,
|
891 |
+
negative_prompt=negative_prompt,
|
892 |
+
)
|
893 |
+
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
|
894 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
|
895 |
+
|
896 |
+
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
|
897 |
+
images = self.pipe(
|
898 |
+
prompt_embeds=prompt_embeds,
|
899 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
900 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
901 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
902 |
+
num_inference_steps=num_inference_steps,
|
903 |
+
generator=generator,
|
904 |
+
**kwargs,
|
905 |
+
).images
|
906 |
+
|
907 |
+
return images
|
ip_adapter/resampler.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
2 |
+
# and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
|
3 |
+
|
4 |
+
import math
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from einops import rearrange
|
9 |
+
from einops.layers.torch import Rearrange
|
10 |
+
|
11 |
+
|
12 |
+
# FFN
|
13 |
+
def FeedForward(dim, mult=4):
|
14 |
+
inner_dim = int(dim * mult)
|
15 |
+
return nn.Sequential(
|
16 |
+
nn.LayerNorm(dim),
|
17 |
+
nn.Linear(dim, inner_dim, bias=False),
|
18 |
+
nn.GELU(),
|
19 |
+
nn.Linear(inner_dim, dim, bias=False),
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
def reshape_tensor(x, heads):
|
24 |
+
bs, length, width = x.shape
|
25 |
+
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
26 |
+
x = x.view(bs, length, heads, -1)
|
27 |
+
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
28 |
+
x = x.transpose(1, 2)
|
29 |
+
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
30 |
+
x = x.reshape(bs, heads, length, -1)
|
31 |
+
return x
|
32 |
+
|
33 |
+
|
34 |
+
class PerceiverAttention(nn.Module):
|
35 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
36 |
+
super().__init__()
|
37 |
+
self.scale = dim_head**-0.5
|
38 |
+
self.dim_head = dim_head
|
39 |
+
self.heads = heads
|
40 |
+
inner_dim = dim_head * heads
|
41 |
+
|
42 |
+
self.norm1 = nn.LayerNorm(dim)
|
43 |
+
self.norm2 = nn.LayerNorm(dim)
|
44 |
+
|
45 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
46 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
47 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
48 |
+
|
49 |
+
def forward(self, x, latents):
|
50 |
+
"""
|
51 |
+
Args:
|
52 |
+
x (torch.Tensor): image features
|
53 |
+
shape (b, n1, D)
|
54 |
+
latent (torch.Tensor): latent features
|
55 |
+
shape (b, n2, D)
|
56 |
+
"""
|
57 |
+
x = self.norm1(x)
|
58 |
+
latents = self.norm2(latents)
|
59 |
+
|
60 |
+
b, l, _ = latents.shape
|
61 |
+
|
62 |
+
q = self.to_q(latents)
|
63 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
64 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
65 |
+
|
66 |
+
q = reshape_tensor(q, self.heads)
|
67 |
+
k = reshape_tensor(k, self.heads)
|
68 |
+
v = reshape_tensor(v, self.heads)
|
69 |
+
|
70 |
+
# attention
|
71 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
72 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
73 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
74 |
+
out = weight @ v
|
75 |
+
|
76 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
77 |
+
|
78 |
+
return self.to_out(out)
|
79 |
+
|
80 |
+
|
81 |
+
class CrossAttention(nn.Module):
|
82 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
83 |
+
super().__init__()
|
84 |
+
self.scale = dim_head**-0.5
|
85 |
+
self.dim_head = dim_head
|
86 |
+
self.heads = heads
|
87 |
+
inner_dim = dim_head * heads
|
88 |
+
|
89 |
+
self.norm1 = nn.LayerNorm(dim)
|
90 |
+
self.norm2 = nn.LayerNorm(dim)
|
91 |
+
|
92 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
93 |
+
self.to_k = nn.Linear(dim, inner_dim, bias=False)
|
94 |
+
self.to_v = nn.Linear(dim, inner_dim, bias=False)
|
95 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
96 |
+
|
97 |
+
|
98 |
+
def forward(self, x, x2):
|
99 |
+
"""
|
100 |
+
Args:
|
101 |
+
x (torch.Tensor): image features
|
102 |
+
shape (b, n1, D)
|
103 |
+
latent (torch.Tensor): latent features
|
104 |
+
shape (b, n2, D)
|
105 |
+
"""
|
106 |
+
x = self.norm1(x)
|
107 |
+
x2 = self.norm2(x2)
|
108 |
+
|
109 |
+
b, l, _ = x2.shape
|
110 |
+
|
111 |
+
q = self.to_q(x)
|
112 |
+
k = self.to_k(x2)
|
113 |
+
v = self.to_v(x2)
|
114 |
+
|
115 |
+
q = reshape_tensor(q, self.heads)
|
116 |
+
k = reshape_tensor(k, self.heads)
|
117 |
+
v = reshape_tensor(v, self.heads)
|
118 |
+
|
119 |
+
# attention
|
120 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
121 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
122 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
123 |
+
out = weight @ v
|
124 |
+
|
125 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
126 |
+
return self.to_out(out)
|
127 |
+
|
128 |
+
|
129 |
+
class Resampler(nn.Module):
|
130 |
+
def __init__(
|
131 |
+
self,
|
132 |
+
dim=1024,
|
133 |
+
depth=8,
|
134 |
+
dim_head=64,
|
135 |
+
heads=16,
|
136 |
+
num_queries=8,
|
137 |
+
embedding_dim=768,
|
138 |
+
output_dim=1024,
|
139 |
+
ff_mult=4,
|
140 |
+
max_seq_len: int = 257, # CLIP tokens + CLS token
|
141 |
+
apply_pos_emb: bool = False,
|
142 |
+
num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
|
143 |
+
):
|
144 |
+
super().__init__()
|
145 |
+
|
146 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
147 |
+
|
148 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
149 |
+
|
150 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
151 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
152 |
+
|
153 |
+
self.layers = nn.ModuleList([])
|
154 |
+
for _ in range(depth):
|
155 |
+
self.layers.append(
|
156 |
+
nn.ModuleList(
|
157 |
+
[
|
158 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
159 |
+
FeedForward(dim=dim, mult=ff_mult),
|
160 |
+
]
|
161 |
+
)
|
162 |
+
)
|
163 |
+
|
164 |
+
def forward(self, x):
|
165 |
+
|
166 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
167 |
+
|
168 |
+
x = self.proj_in(x)
|
169 |
+
|
170 |
+
|
171 |
+
for attn, ff in self.layers:
|
172 |
+
latents = attn(x, latents) + latents
|
173 |
+
latents = ff(latents) + latents
|
174 |
+
|
175 |
+
latents = self.proj_out(latents)
|
176 |
+
return self.norm_out(latents)
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
def masked_mean(t, *, dim, mask=None):
|
181 |
+
if mask is None:
|
182 |
+
return t.mean(dim=dim)
|
183 |
+
|
184 |
+
denom = mask.sum(dim=dim, keepdim=True)
|
185 |
+
mask = rearrange(mask, "b n -> b n 1")
|
186 |
+
masked_t = t.masked_fill(~mask, 0.0)
|
187 |
+
|
188 |
+
return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
|
ip_adapter/test_resampler.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from resampler import Resampler
|
3 |
+
from transformers import CLIPVisionModel
|
4 |
+
|
5 |
+
BATCH_SIZE = 2
|
6 |
+
OUTPUT_DIM = 1280
|
7 |
+
NUM_QUERIES = 8
|
8 |
+
NUM_LATENTS_MEAN_POOLED = 4 # 0 for no mean pooling (previous behavior)
|
9 |
+
APPLY_POS_EMB = True # False for no positional embeddings (previous behavior)
|
10 |
+
IMAGE_ENCODER_NAME_OR_PATH = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
|
11 |
+
|
12 |
+
|
13 |
+
def main():
|
14 |
+
image_encoder = CLIPVisionModel.from_pretrained(IMAGE_ENCODER_NAME_OR_PATH)
|
15 |
+
embedding_dim = image_encoder.config.hidden_size
|
16 |
+
print(f"image_encoder hidden size: ", embedding_dim)
|
17 |
+
|
18 |
+
image_proj_model = Resampler(
|
19 |
+
dim=1024,
|
20 |
+
depth=2,
|
21 |
+
dim_head=64,
|
22 |
+
heads=16,
|
23 |
+
num_queries=NUM_QUERIES,
|
24 |
+
embedding_dim=embedding_dim,
|
25 |
+
output_dim=OUTPUT_DIM,
|
26 |
+
ff_mult=2,
|
27 |
+
max_seq_len=257,
|
28 |
+
apply_pos_emb=APPLY_POS_EMB,
|
29 |
+
num_latents_mean_pooled=NUM_LATENTS_MEAN_POOLED,
|
30 |
+
)
|
31 |
+
|
32 |
+
dummy_images = torch.randn(BATCH_SIZE, 3, 224, 224)
|
33 |
+
with torch.no_grad():
|
34 |
+
image_embeds = image_encoder(dummy_images, output_hidden_states=True).hidden_states[-2]
|
35 |
+
print("image_embds shape: ", image_embeds.shape)
|
36 |
+
|
37 |
+
with torch.no_grad():
|
38 |
+
ip_tokens = image_proj_model(image_embeds)
|
39 |
+
print("ip_tokens shape:", ip_tokens.shape)
|
40 |
+
assert ip_tokens.shape == (BATCH_SIZE, NUM_QUERIES + NUM_LATENTS_MEAN_POOLED, OUTPUT_DIM)
|
41 |
+
|
42 |
+
|
43 |
+
if __name__ == "__main__":
|
44 |
+
main()
|
ip_adapter/utils.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn.functional as F
|
2 |
+
|
3 |
+
|
4 |
+
def is_torch2_available():
|
5 |
+
return hasattr(F, "scaled_dot_product_attention")
|