Spaces:
No application file
No application file
ML-Motivators
commited on
Upload 18 files
Browse files- src/__pycache__/attentionhacked_garmnet.cpython-310.pyc +0 -0
- src/__pycache__/attentionhacked_tryon.cpython-310.pyc +0 -0
- src/__pycache__/transformerhacked_garmnet.cpython-310.pyc +0 -0
- src/__pycache__/transformerhacked_tryon.cpython-310.pyc +0 -0
- src/__pycache__/tryon_pipeline.cpython-310.pyc +0 -0
- src/__pycache__/unet_block_hacked_garmnet.cpython-310.pyc +0 -0
- src/__pycache__/unet_block_hacked_tryon.cpython-310.pyc +0 -0
- src/__pycache__/unet_hacked_garmnet.cpython-310.pyc +0 -0
- src/__pycache__/unet_hacked_tryon.cpython-310.pyc +0 -0
- src/attentionhacked_garmnet.py +670 -0
- src/attentionhacked_tryon.py +679 -0
- src/transformerhacked_garmnet.py +460 -0
- src/transformerhacked_tryon.py +467 -0
- src/tryon_pipeline.py +1892 -0
- src/unet_block_hacked_garmnet.py +0 -0
- src/unet_block_hacked_tryon.py +0 -0
- src/unet_hacked_garmnet.py +1284 -0
- src/unet_hacked_tryon.py +1395 -0
src/__pycache__/attentionhacked_garmnet.cpython-310.pyc
ADDED
Binary file (16.4 kB). View file
|
|
src/__pycache__/attentionhacked_tryon.cpython-310.pyc
ADDED
Binary file (16.5 kB). View file
|
|
src/__pycache__/transformerhacked_garmnet.cpython-310.pyc
ADDED
Binary file (14.5 kB). View file
|
|
src/__pycache__/transformerhacked_tryon.cpython-310.pyc
ADDED
Binary file (14.5 kB). View file
|
|
src/__pycache__/tryon_pipeline.cpython-310.pyc
ADDED
Binary file (61.4 kB). View file
|
|
src/__pycache__/unet_block_hacked_garmnet.cpython-310.pyc
ADDED
Binary file (63.6 kB). View file
|
|
src/__pycache__/unet_block_hacked_tryon.cpython-310.pyc
ADDED
Binary file (63.6 kB). View file
|
|
src/__pycache__/unet_hacked_garmnet.cpython-310.pyc
ADDED
Binary file (38.9 kB). View file
|
|
src/__pycache__/unet_hacked_tryon.cpython-310.pyc
ADDED
Binary file (39.9 kB). View file
|
|
src/attentionhacked_garmnet.py
ADDED
@@ -0,0 +1,670 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Any, Dict, Optional
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
from diffusers.utils import USE_PEFT_BACKEND
|
21 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
22 |
+
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
|
23 |
+
from diffusers.models.attention_processor import Attention
|
24 |
+
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
25 |
+
from diffusers.models.lora import LoRACompatibleLinear
|
26 |
+
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
|
27 |
+
|
28 |
+
|
29 |
+
def _chunked_feed_forward(
|
30 |
+
ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int, lora_scale: Optional[float] = None
|
31 |
+
):
|
32 |
+
# "feed_forward_chunk_size" can be used to save memory
|
33 |
+
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
34 |
+
raise ValueError(
|
35 |
+
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
36 |
+
)
|
37 |
+
|
38 |
+
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
39 |
+
if lora_scale is None:
|
40 |
+
ff_output = torch.cat(
|
41 |
+
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
42 |
+
dim=chunk_dim,
|
43 |
+
)
|
44 |
+
else:
|
45 |
+
# TOOD(Patrick): LoRA scale can be removed once PEFT refactor is complete
|
46 |
+
ff_output = torch.cat(
|
47 |
+
[ff(hid_slice, scale=lora_scale) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
48 |
+
dim=chunk_dim,
|
49 |
+
)
|
50 |
+
|
51 |
+
return ff_output
|
52 |
+
|
53 |
+
|
54 |
+
@maybe_allow_in_graph
|
55 |
+
class GatedSelfAttentionDense(nn.Module):
|
56 |
+
r"""
|
57 |
+
A gated self-attention dense layer that combines visual features and object features.
|
58 |
+
|
59 |
+
Parameters:
|
60 |
+
query_dim (`int`): The number of channels in the query.
|
61 |
+
context_dim (`int`): The number of channels in the context.
|
62 |
+
n_heads (`int`): The number of heads to use for attention.
|
63 |
+
d_head (`int`): The number of channels in each head.
|
64 |
+
"""
|
65 |
+
|
66 |
+
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
|
67 |
+
super().__init__()
|
68 |
+
|
69 |
+
# we need a linear projection since we need cat visual feature and obj feature
|
70 |
+
self.linear = nn.Linear(context_dim, query_dim)
|
71 |
+
|
72 |
+
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
|
73 |
+
self.ff = FeedForward(query_dim, activation_fn="geglu")
|
74 |
+
|
75 |
+
self.norm1 = nn.LayerNorm(query_dim)
|
76 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
77 |
+
|
78 |
+
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
|
79 |
+
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
|
80 |
+
|
81 |
+
self.enabled = True
|
82 |
+
|
83 |
+
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
|
84 |
+
if not self.enabled:
|
85 |
+
return x
|
86 |
+
|
87 |
+
n_visual = x.shape[1]
|
88 |
+
objs = self.linear(objs)
|
89 |
+
|
90 |
+
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
|
91 |
+
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
|
92 |
+
|
93 |
+
return x
|
94 |
+
|
95 |
+
|
96 |
+
@maybe_allow_in_graph
|
97 |
+
class BasicTransformerBlock(nn.Module):
|
98 |
+
r"""
|
99 |
+
A basic Transformer block.
|
100 |
+
|
101 |
+
Parameters:
|
102 |
+
dim (`int`): The number of channels in the input and output.
|
103 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
104 |
+
attention_head_dim (`int`): The number of channels in each head.
|
105 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
106 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
107 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
108 |
+
num_embeds_ada_norm (:
|
109 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
110 |
+
attention_bias (:
|
111 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
112 |
+
only_cross_attention (`bool`, *optional*):
|
113 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
114 |
+
double_self_attention (`bool`, *optional*):
|
115 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
116 |
+
upcast_attention (`bool`, *optional*):
|
117 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
118 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
119 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
120 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
121 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
122 |
+
final_dropout (`bool` *optional*, defaults to False):
|
123 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
124 |
+
attention_type (`str`, *optional*, defaults to `"default"`):
|
125 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
126 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
127 |
+
The type of positional embeddings to apply to.
|
128 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
129 |
+
The maximum number of positional embeddings to apply.
|
130 |
+
"""
|
131 |
+
|
132 |
+
def __init__(
|
133 |
+
self,
|
134 |
+
dim: int,
|
135 |
+
num_attention_heads: int,
|
136 |
+
attention_head_dim: int,
|
137 |
+
dropout=0.0,
|
138 |
+
cross_attention_dim: Optional[int] = None,
|
139 |
+
activation_fn: str = "geglu",
|
140 |
+
num_embeds_ada_norm: Optional[int] = None,
|
141 |
+
attention_bias: bool = False,
|
142 |
+
only_cross_attention: bool = False,
|
143 |
+
double_self_attention: bool = False,
|
144 |
+
upcast_attention: bool = False,
|
145 |
+
norm_elementwise_affine: bool = True,
|
146 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
|
147 |
+
norm_eps: float = 1e-5,
|
148 |
+
final_dropout: bool = False,
|
149 |
+
attention_type: str = "default",
|
150 |
+
positional_embeddings: Optional[str] = None,
|
151 |
+
num_positional_embeddings: Optional[int] = None,
|
152 |
+
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
|
153 |
+
ada_norm_bias: Optional[int] = None,
|
154 |
+
ff_inner_dim: Optional[int] = None,
|
155 |
+
ff_bias: bool = True,
|
156 |
+
attention_out_bias: bool = True,
|
157 |
+
):
|
158 |
+
super().__init__()
|
159 |
+
self.only_cross_attention = only_cross_attention
|
160 |
+
|
161 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
162 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
163 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
164 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
165 |
+
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
|
166 |
+
|
167 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
168 |
+
raise ValueError(
|
169 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
170 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
171 |
+
)
|
172 |
+
|
173 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
174 |
+
raise ValueError(
|
175 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
176 |
+
)
|
177 |
+
|
178 |
+
if positional_embeddings == "sinusoidal":
|
179 |
+
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
180 |
+
else:
|
181 |
+
self.pos_embed = None
|
182 |
+
|
183 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
184 |
+
# 1. Self-Attn
|
185 |
+
if self.use_ada_layer_norm:
|
186 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
187 |
+
elif self.use_ada_layer_norm_zero:
|
188 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
189 |
+
elif self.use_ada_layer_norm_continuous:
|
190 |
+
self.norm1 = AdaLayerNormContinuous(
|
191 |
+
dim,
|
192 |
+
ada_norm_continous_conditioning_embedding_dim,
|
193 |
+
norm_elementwise_affine,
|
194 |
+
norm_eps,
|
195 |
+
ada_norm_bias,
|
196 |
+
"rms_norm",
|
197 |
+
)
|
198 |
+
else:
|
199 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
200 |
+
|
201 |
+
self.attn1 = Attention(
|
202 |
+
query_dim=dim,
|
203 |
+
heads=num_attention_heads,
|
204 |
+
dim_head=attention_head_dim,
|
205 |
+
dropout=dropout,
|
206 |
+
bias=attention_bias,
|
207 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
208 |
+
upcast_attention=upcast_attention,
|
209 |
+
out_bias=attention_out_bias,
|
210 |
+
)
|
211 |
+
|
212 |
+
# 2. Cross-Attn
|
213 |
+
if cross_attention_dim is not None or double_self_attention:
|
214 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
215 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
216 |
+
# the second cross attention block.
|
217 |
+
if self.use_ada_layer_norm:
|
218 |
+
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
219 |
+
elif self.use_ada_layer_norm_continuous:
|
220 |
+
self.norm2 = AdaLayerNormContinuous(
|
221 |
+
dim,
|
222 |
+
ada_norm_continous_conditioning_embedding_dim,
|
223 |
+
norm_elementwise_affine,
|
224 |
+
norm_eps,
|
225 |
+
ada_norm_bias,
|
226 |
+
"rms_norm",
|
227 |
+
)
|
228 |
+
else:
|
229 |
+
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
230 |
+
|
231 |
+
self.attn2 = Attention(
|
232 |
+
query_dim=dim,
|
233 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
234 |
+
heads=num_attention_heads,
|
235 |
+
dim_head=attention_head_dim,
|
236 |
+
dropout=dropout,
|
237 |
+
bias=attention_bias,
|
238 |
+
upcast_attention=upcast_attention,
|
239 |
+
out_bias=attention_out_bias,
|
240 |
+
) # is self-attn if encoder_hidden_states is none
|
241 |
+
else:
|
242 |
+
self.norm2 = None
|
243 |
+
self.attn2 = None
|
244 |
+
|
245 |
+
# 3. Feed-forward
|
246 |
+
if self.use_ada_layer_norm_continuous:
|
247 |
+
self.norm3 = AdaLayerNormContinuous(
|
248 |
+
dim,
|
249 |
+
ada_norm_continous_conditioning_embedding_dim,
|
250 |
+
norm_elementwise_affine,
|
251 |
+
norm_eps,
|
252 |
+
ada_norm_bias,
|
253 |
+
"layer_norm",
|
254 |
+
)
|
255 |
+
elif not self.use_ada_layer_norm_single:
|
256 |
+
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
257 |
+
|
258 |
+
self.ff = FeedForward(
|
259 |
+
dim,
|
260 |
+
dropout=dropout,
|
261 |
+
activation_fn=activation_fn,
|
262 |
+
final_dropout=final_dropout,
|
263 |
+
inner_dim=ff_inner_dim,
|
264 |
+
bias=ff_bias,
|
265 |
+
)
|
266 |
+
|
267 |
+
# 4. Fuser
|
268 |
+
if attention_type == "gated" or attention_type == "gated-text-image":
|
269 |
+
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
|
270 |
+
|
271 |
+
# 5. Scale-shift for PixArt-Alpha.
|
272 |
+
if self.use_ada_layer_norm_single:
|
273 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
274 |
+
|
275 |
+
# let chunk size default to None
|
276 |
+
self._chunk_size = None
|
277 |
+
self._chunk_dim = 0
|
278 |
+
|
279 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
280 |
+
# Sets chunk feed-forward
|
281 |
+
self._chunk_size = chunk_size
|
282 |
+
self._chunk_dim = dim
|
283 |
+
|
284 |
+
def forward(
|
285 |
+
self,
|
286 |
+
hidden_states: torch.FloatTensor,
|
287 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
288 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
289 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
290 |
+
timestep: Optional[torch.LongTensor] = None,
|
291 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
292 |
+
class_labels: Optional[torch.LongTensor] = None,
|
293 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
294 |
+
) -> torch.FloatTensor:
|
295 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
296 |
+
# 0. Self-Attention
|
297 |
+
batch_size = hidden_states.shape[0]
|
298 |
+
if self.use_ada_layer_norm:
|
299 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
300 |
+
elif self.use_ada_layer_norm_zero:
|
301 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
302 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
303 |
+
)
|
304 |
+
elif self.use_layer_norm:
|
305 |
+
norm_hidden_states = self.norm1(hidden_states)
|
306 |
+
elif self.use_ada_layer_norm_continuous:
|
307 |
+
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
308 |
+
elif self.use_ada_layer_norm_single:
|
309 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
310 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
311 |
+
).chunk(6, dim=1)
|
312 |
+
norm_hidden_states = self.norm1(hidden_states)
|
313 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
314 |
+
norm_hidden_states = norm_hidden_states.squeeze(1)
|
315 |
+
else:
|
316 |
+
raise ValueError("Incorrect norm used")
|
317 |
+
|
318 |
+
if self.pos_embed is not None:
|
319 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
320 |
+
|
321 |
+
garment_features = []
|
322 |
+
garment_features.append(norm_hidden_states)
|
323 |
+
|
324 |
+
# 1. Retrieve lora scale.
|
325 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
326 |
+
|
327 |
+
# 2. Prepare GLIGEN inputs
|
328 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
329 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
330 |
+
|
331 |
+
attn_output = self.attn1(
|
332 |
+
norm_hidden_states,
|
333 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
334 |
+
attention_mask=attention_mask,
|
335 |
+
**cross_attention_kwargs,
|
336 |
+
)
|
337 |
+
if self.use_ada_layer_norm_zero:
|
338 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
339 |
+
elif self.use_ada_layer_norm_single:
|
340 |
+
attn_output = gate_msa * attn_output
|
341 |
+
|
342 |
+
hidden_states = attn_output + hidden_states
|
343 |
+
if hidden_states.ndim == 4:
|
344 |
+
hidden_states = hidden_states.squeeze(1)
|
345 |
+
|
346 |
+
# 2.5 GLIGEN Control
|
347 |
+
if gligen_kwargs is not None:
|
348 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
349 |
+
|
350 |
+
# 3. Cross-Attention
|
351 |
+
if self.attn2 is not None:
|
352 |
+
if self.use_ada_layer_norm:
|
353 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
354 |
+
elif self.use_ada_layer_norm_zero or self.use_layer_norm:
|
355 |
+
norm_hidden_states = self.norm2(hidden_states)
|
356 |
+
elif self.use_ada_layer_norm_single:
|
357 |
+
# For PixArt norm2 isn't applied here:
|
358 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
359 |
+
norm_hidden_states = hidden_states
|
360 |
+
elif self.use_ada_layer_norm_continuous:
|
361 |
+
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
362 |
+
else:
|
363 |
+
raise ValueError("Incorrect norm")
|
364 |
+
|
365 |
+
if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
|
366 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
367 |
+
|
368 |
+
attn_output = self.attn2(
|
369 |
+
norm_hidden_states,
|
370 |
+
encoder_hidden_states=encoder_hidden_states,
|
371 |
+
attention_mask=encoder_attention_mask,
|
372 |
+
**cross_attention_kwargs,
|
373 |
+
)
|
374 |
+
hidden_states = attn_output + hidden_states
|
375 |
+
|
376 |
+
# 4. Feed-forward
|
377 |
+
if self.use_ada_layer_norm_continuous:
|
378 |
+
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
379 |
+
elif not self.use_ada_layer_norm_single:
|
380 |
+
norm_hidden_states = self.norm3(hidden_states)
|
381 |
+
|
382 |
+
if self.use_ada_layer_norm_zero:
|
383 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
384 |
+
|
385 |
+
if self.use_ada_layer_norm_single:
|
386 |
+
norm_hidden_states = self.norm2(hidden_states)
|
387 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
388 |
+
|
389 |
+
if self._chunk_size is not None:
|
390 |
+
# "feed_forward_chunk_size" can be used to save memory
|
391 |
+
ff_output = _chunked_feed_forward(
|
392 |
+
self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
|
393 |
+
)
|
394 |
+
else:
|
395 |
+
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
|
396 |
+
|
397 |
+
if self.use_ada_layer_norm_zero:
|
398 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
399 |
+
elif self.use_ada_layer_norm_single:
|
400 |
+
ff_output = gate_mlp * ff_output
|
401 |
+
|
402 |
+
hidden_states = ff_output + hidden_states
|
403 |
+
if hidden_states.ndim == 4:
|
404 |
+
hidden_states = hidden_states.squeeze(1)
|
405 |
+
|
406 |
+
return hidden_states, garment_features
|
407 |
+
|
408 |
+
|
409 |
+
@maybe_allow_in_graph
|
410 |
+
class TemporalBasicTransformerBlock(nn.Module):
|
411 |
+
r"""
|
412 |
+
A basic Transformer block for video like data.
|
413 |
+
|
414 |
+
Parameters:
|
415 |
+
dim (`int`): The number of channels in the input and output.
|
416 |
+
time_mix_inner_dim (`int`): The number of channels for temporal attention.
|
417 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
418 |
+
attention_head_dim (`int`): The number of channels in each head.
|
419 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
420 |
+
"""
|
421 |
+
|
422 |
+
def __init__(
|
423 |
+
self,
|
424 |
+
dim: int,
|
425 |
+
time_mix_inner_dim: int,
|
426 |
+
num_attention_heads: int,
|
427 |
+
attention_head_dim: int,
|
428 |
+
cross_attention_dim: Optional[int] = None,
|
429 |
+
):
|
430 |
+
super().__init__()
|
431 |
+
self.is_res = dim == time_mix_inner_dim
|
432 |
+
|
433 |
+
self.norm_in = nn.LayerNorm(dim)
|
434 |
+
|
435 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
436 |
+
# 1. Self-Attn
|
437 |
+
self.norm_in = nn.LayerNorm(dim)
|
438 |
+
self.ff_in = FeedForward(
|
439 |
+
dim,
|
440 |
+
dim_out=time_mix_inner_dim,
|
441 |
+
activation_fn="geglu",
|
442 |
+
)
|
443 |
+
|
444 |
+
self.norm1 = nn.LayerNorm(time_mix_inner_dim)
|
445 |
+
self.attn1 = Attention(
|
446 |
+
query_dim=time_mix_inner_dim,
|
447 |
+
heads=num_attention_heads,
|
448 |
+
dim_head=attention_head_dim,
|
449 |
+
cross_attention_dim=None,
|
450 |
+
)
|
451 |
+
|
452 |
+
# 2. Cross-Attn
|
453 |
+
if cross_attention_dim is not None:
|
454 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
455 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
456 |
+
# the second cross attention block.
|
457 |
+
self.norm2 = nn.LayerNorm(time_mix_inner_dim)
|
458 |
+
self.attn2 = Attention(
|
459 |
+
query_dim=time_mix_inner_dim,
|
460 |
+
cross_attention_dim=cross_attention_dim,
|
461 |
+
heads=num_attention_heads,
|
462 |
+
dim_head=attention_head_dim,
|
463 |
+
) # is self-attn if encoder_hidden_states is none
|
464 |
+
else:
|
465 |
+
self.norm2 = None
|
466 |
+
self.attn2 = None
|
467 |
+
|
468 |
+
# 3. Feed-forward
|
469 |
+
self.norm3 = nn.LayerNorm(time_mix_inner_dim)
|
470 |
+
self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
|
471 |
+
|
472 |
+
# let chunk size default to None
|
473 |
+
self._chunk_size = None
|
474 |
+
self._chunk_dim = None
|
475 |
+
|
476 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
|
477 |
+
# Sets chunk feed-forward
|
478 |
+
self._chunk_size = chunk_size
|
479 |
+
# chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
|
480 |
+
self._chunk_dim = 1
|
481 |
+
|
482 |
+
def forward(
|
483 |
+
self,
|
484 |
+
hidden_states: torch.FloatTensor,
|
485 |
+
num_frames: int,
|
486 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
487 |
+
) -> torch.FloatTensor:
|
488 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
489 |
+
# 0. Self-Attention
|
490 |
+
batch_size = hidden_states.shape[0]
|
491 |
+
|
492 |
+
batch_frames, seq_length, channels = hidden_states.shape
|
493 |
+
batch_size = batch_frames // num_frames
|
494 |
+
|
495 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
|
496 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
497 |
+
hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
|
498 |
+
|
499 |
+
residual = hidden_states
|
500 |
+
hidden_states = self.norm_in(hidden_states)
|
501 |
+
|
502 |
+
if self._chunk_size is not None:
|
503 |
+
hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
|
504 |
+
else:
|
505 |
+
hidden_states = self.ff_in(hidden_states)
|
506 |
+
|
507 |
+
if self.is_res:
|
508 |
+
hidden_states = hidden_states + residual
|
509 |
+
|
510 |
+
norm_hidden_states = self.norm1(hidden_states)
|
511 |
+
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
|
512 |
+
hidden_states = attn_output + hidden_states
|
513 |
+
|
514 |
+
# 3. Cross-Attention
|
515 |
+
if self.attn2 is not None:
|
516 |
+
norm_hidden_states = self.norm2(hidden_states)
|
517 |
+
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
|
518 |
+
hidden_states = attn_output + hidden_states
|
519 |
+
|
520 |
+
# 4. Feed-forward
|
521 |
+
norm_hidden_states = self.norm3(hidden_states)
|
522 |
+
|
523 |
+
if self._chunk_size is not None:
|
524 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
525 |
+
else:
|
526 |
+
ff_output = self.ff(norm_hidden_states)
|
527 |
+
|
528 |
+
if self.is_res:
|
529 |
+
hidden_states = ff_output + hidden_states
|
530 |
+
else:
|
531 |
+
hidden_states = ff_output
|
532 |
+
|
533 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
|
534 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
535 |
+
hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
|
536 |
+
|
537 |
+
return hidden_states
|
538 |
+
|
539 |
+
|
540 |
+
class SkipFFTransformerBlock(nn.Module):
|
541 |
+
def __init__(
|
542 |
+
self,
|
543 |
+
dim: int,
|
544 |
+
num_attention_heads: int,
|
545 |
+
attention_head_dim: int,
|
546 |
+
kv_input_dim: int,
|
547 |
+
kv_input_dim_proj_use_bias: bool,
|
548 |
+
dropout=0.0,
|
549 |
+
cross_attention_dim: Optional[int] = None,
|
550 |
+
attention_bias: bool = False,
|
551 |
+
attention_out_bias: bool = True,
|
552 |
+
):
|
553 |
+
super().__init__()
|
554 |
+
if kv_input_dim != dim:
|
555 |
+
self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
|
556 |
+
else:
|
557 |
+
self.kv_mapper = None
|
558 |
+
|
559 |
+
self.norm1 = RMSNorm(dim, 1e-06)
|
560 |
+
|
561 |
+
self.attn1 = Attention(
|
562 |
+
query_dim=dim,
|
563 |
+
heads=num_attention_heads,
|
564 |
+
dim_head=attention_head_dim,
|
565 |
+
dropout=dropout,
|
566 |
+
bias=attention_bias,
|
567 |
+
cross_attention_dim=cross_attention_dim,
|
568 |
+
out_bias=attention_out_bias,
|
569 |
+
)
|
570 |
+
|
571 |
+
self.norm2 = RMSNorm(dim, 1e-06)
|
572 |
+
|
573 |
+
self.attn2 = Attention(
|
574 |
+
query_dim=dim,
|
575 |
+
cross_attention_dim=cross_attention_dim,
|
576 |
+
heads=num_attention_heads,
|
577 |
+
dim_head=attention_head_dim,
|
578 |
+
dropout=dropout,
|
579 |
+
bias=attention_bias,
|
580 |
+
out_bias=attention_out_bias,
|
581 |
+
)
|
582 |
+
|
583 |
+
def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
|
584 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
585 |
+
|
586 |
+
if self.kv_mapper is not None:
|
587 |
+
encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
|
588 |
+
|
589 |
+
norm_hidden_states = self.norm1(hidden_states)
|
590 |
+
|
591 |
+
attn_output = self.attn1(
|
592 |
+
norm_hidden_states,
|
593 |
+
encoder_hidden_states=encoder_hidden_states,
|
594 |
+
**cross_attention_kwargs,
|
595 |
+
)
|
596 |
+
|
597 |
+
hidden_states = attn_output + hidden_states
|
598 |
+
|
599 |
+
norm_hidden_states = self.norm2(hidden_states)
|
600 |
+
|
601 |
+
attn_output = self.attn2(
|
602 |
+
norm_hidden_states,
|
603 |
+
encoder_hidden_states=encoder_hidden_states,
|
604 |
+
**cross_attention_kwargs,
|
605 |
+
)
|
606 |
+
|
607 |
+
hidden_states = attn_output + hidden_states
|
608 |
+
|
609 |
+
return hidden_states
|
610 |
+
|
611 |
+
|
612 |
+
class FeedForward(nn.Module):
|
613 |
+
r"""
|
614 |
+
A feed-forward layer.
|
615 |
+
|
616 |
+
Parameters:
|
617 |
+
dim (`int`): The number of channels in the input.
|
618 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
619 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
620 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
621 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
622 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
623 |
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
624 |
+
"""
|
625 |
+
|
626 |
+
def __init__(
|
627 |
+
self,
|
628 |
+
dim: int,
|
629 |
+
dim_out: Optional[int] = None,
|
630 |
+
mult: int = 4,
|
631 |
+
dropout: float = 0.0,
|
632 |
+
activation_fn: str = "geglu",
|
633 |
+
final_dropout: bool = False,
|
634 |
+
inner_dim=None,
|
635 |
+
bias: bool = True,
|
636 |
+
):
|
637 |
+
super().__init__()
|
638 |
+
if inner_dim is None:
|
639 |
+
inner_dim = int(dim * mult)
|
640 |
+
dim_out = dim_out if dim_out is not None else dim
|
641 |
+
linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
|
642 |
+
|
643 |
+
if activation_fn == "gelu":
|
644 |
+
act_fn = GELU(dim, inner_dim, bias=bias)
|
645 |
+
if activation_fn == "gelu-approximate":
|
646 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
|
647 |
+
elif activation_fn == "geglu":
|
648 |
+
act_fn = GEGLU(dim, inner_dim, bias=bias)
|
649 |
+
elif activation_fn == "geglu-approximate":
|
650 |
+
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
|
651 |
+
|
652 |
+
self.net = nn.ModuleList([])
|
653 |
+
# project in
|
654 |
+
self.net.append(act_fn)
|
655 |
+
# project dropout
|
656 |
+
self.net.append(nn.Dropout(dropout))
|
657 |
+
# project out
|
658 |
+
self.net.append(linear_cls(inner_dim, dim_out, bias=bias))
|
659 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
660 |
+
if final_dropout:
|
661 |
+
self.net.append(nn.Dropout(dropout))
|
662 |
+
|
663 |
+
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
|
664 |
+
compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
|
665 |
+
for module in self.net:
|
666 |
+
if isinstance(module, compatible_cls):
|
667 |
+
hidden_states = module(hidden_states, scale)
|
668 |
+
else:
|
669 |
+
hidden_states = module(hidden_states)
|
670 |
+
return hidden_states
|
src/attentionhacked_tryon.py
ADDED
@@ -0,0 +1,679 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Any, Dict, Optional
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
from diffusers.utils import USE_PEFT_BACKEND
|
21 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
22 |
+
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
|
23 |
+
from diffusers.models.attention_processor import Attention
|
24 |
+
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
25 |
+
from diffusers.models.lora import LoRACompatibleLinear
|
26 |
+
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
|
27 |
+
|
28 |
+
|
29 |
+
def _chunked_feed_forward(
|
30 |
+
ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int, lora_scale: Optional[float] = None
|
31 |
+
):
|
32 |
+
# "feed_forward_chunk_size" can be used to save memory
|
33 |
+
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
34 |
+
raise ValueError(
|
35 |
+
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
36 |
+
)
|
37 |
+
|
38 |
+
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
39 |
+
if lora_scale is None:
|
40 |
+
ff_output = torch.cat(
|
41 |
+
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
42 |
+
dim=chunk_dim,
|
43 |
+
)
|
44 |
+
else:
|
45 |
+
# TOOD(Patrick): LoRA scale can be removed once PEFT refactor is complete
|
46 |
+
ff_output = torch.cat(
|
47 |
+
[ff(hid_slice, scale=lora_scale) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
48 |
+
dim=chunk_dim,
|
49 |
+
)
|
50 |
+
|
51 |
+
return ff_output
|
52 |
+
|
53 |
+
|
54 |
+
@maybe_allow_in_graph
|
55 |
+
class GatedSelfAttentionDense(nn.Module):
|
56 |
+
r"""
|
57 |
+
A gated self-attention dense layer that combines visual features and object features.
|
58 |
+
|
59 |
+
Parameters:
|
60 |
+
query_dim (`int`): The number of channels in the query.
|
61 |
+
context_dim (`int`): The number of channels in the context.
|
62 |
+
n_heads (`int`): The number of heads to use for attention.
|
63 |
+
d_head (`int`): The number of channels in each head.
|
64 |
+
"""
|
65 |
+
|
66 |
+
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
|
67 |
+
super().__init__()
|
68 |
+
|
69 |
+
# we need a linear projection since we need cat visual feature and obj feature
|
70 |
+
self.linear = nn.Linear(context_dim, query_dim)
|
71 |
+
|
72 |
+
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
|
73 |
+
self.ff = FeedForward(query_dim, activation_fn="geglu")
|
74 |
+
|
75 |
+
self.norm1 = nn.LayerNorm(query_dim)
|
76 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
77 |
+
|
78 |
+
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
|
79 |
+
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
|
80 |
+
|
81 |
+
self.enabled = True
|
82 |
+
|
83 |
+
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
|
84 |
+
if not self.enabled:
|
85 |
+
return x
|
86 |
+
|
87 |
+
n_visual = x.shape[1]
|
88 |
+
objs = self.linear(objs)
|
89 |
+
|
90 |
+
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
|
91 |
+
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
|
92 |
+
|
93 |
+
return x
|
94 |
+
|
95 |
+
|
96 |
+
@maybe_allow_in_graph
|
97 |
+
class BasicTransformerBlock(nn.Module):
|
98 |
+
r"""
|
99 |
+
A basic Transformer block.
|
100 |
+
|
101 |
+
Parameters:
|
102 |
+
dim (`int`): The number of channels in the input and output.
|
103 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
104 |
+
attention_head_dim (`int`): The number of channels in each head.
|
105 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
106 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
107 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
108 |
+
num_embeds_ada_norm (:
|
109 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
110 |
+
attention_bias (:
|
111 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
112 |
+
only_cross_attention (`bool`, *optional*):
|
113 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
114 |
+
double_self_attention (`bool`, *optional*):
|
115 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
116 |
+
upcast_attention (`bool`, *optional*):
|
117 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
118 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
119 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
120 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
121 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
122 |
+
final_dropout (`bool` *optional*, defaults to False):
|
123 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
124 |
+
attention_type (`str`, *optional*, defaults to `"default"`):
|
125 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
126 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
127 |
+
The type of positional embeddings to apply to.
|
128 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
129 |
+
The maximum number of positional embeddings to apply.
|
130 |
+
"""
|
131 |
+
|
132 |
+
def __init__(
|
133 |
+
self,
|
134 |
+
dim: int,
|
135 |
+
num_attention_heads: int,
|
136 |
+
attention_head_dim: int,
|
137 |
+
dropout=0.0,
|
138 |
+
cross_attention_dim: Optional[int] = None,
|
139 |
+
activation_fn: str = "geglu",
|
140 |
+
num_embeds_ada_norm: Optional[int] = None,
|
141 |
+
attention_bias: bool = False,
|
142 |
+
only_cross_attention: bool = False,
|
143 |
+
double_self_attention: bool = False,
|
144 |
+
upcast_attention: bool = False,
|
145 |
+
norm_elementwise_affine: bool = True,
|
146 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
|
147 |
+
norm_eps: float = 1e-5,
|
148 |
+
final_dropout: bool = False,
|
149 |
+
attention_type: str = "default",
|
150 |
+
positional_embeddings: Optional[str] = None,
|
151 |
+
num_positional_embeddings: Optional[int] = None,
|
152 |
+
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
|
153 |
+
ada_norm_bias: Optional[int] = None,
|
154 |
+
ff_inner_dim: Optional[int] = None,
|
155 |
+
ff_bias: bool = True,
|
156 |
+
attention_out_bias: bool = True,
|
157 |
+
):
|
158 |
+
super().__init__()
|
159 |
+
self.only_cross_attention = only_cross_attention
|
160 |
+
|
161 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
162 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
163 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
164 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
165 |
+
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
|
166 |
+
|
167 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
168 |
+
raise ValueError(
|
169 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
170 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
171 |
+
)
|
172 |
+
|
173 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
174 |
+
raise ValueError(
|
175 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
176 |
+
)
|
177 |
+
|
178 |
+
if positional_embeddings == "sinusoidal":
|
179 |
+
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
180 |
+
else:
|
181 |
+
self.pos_embed = None
|
182 |
+
|
183 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
184 |
+
# 1. Self-Attn
|
185 |
+
if self.use_ada_layer_norm:
|
186 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
187 |
+
elif self.use_ada_layer_norm_zero:
|
188 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
189 |
+
elif self.use_ada_layer_norm_continuous:
|
190 |
+
self.norm1 = AdaLayerNormContinuous(
|
191 |
+
dim,
|
192 |
+
ada_norm_continous_conditioning_embedding_dim,
|
193 |
+
norm_elementwise_affine,
|
194 |
+
norm_eps,
|
195 |
+
ada_norm_bias,
|
196 |
+
"rms_norm",
|
197 |
+
)
|
198 |
+
else:
|
199 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
200 |
+
|
201 |
+
self.attn1 = Attention(
|
202 |
+
query_dim=dim,
|
203 |
+
heads=num_attention_heads,
|
204 |
+
dim_head=attention_head_dim,
|
205 |
+
dropout=dropout,
|
206 |
+
bias=attention_bias,
|
207 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
208 |
+
upcast_attention=upcast_attention,
|
209 |
+
out_bias=attention_out_bias,
|
210 |
+
)
|
211 |
+
|
212 |
+
# 2. Cross-Attn
|
213 |
+
if cross_attention_dim is not None or double_self_attention:
|
214 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
215 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
216 |
+
# the second cross attention block.
|
217 |
+
if self.use_ada_layer_norm:
|
218 |
+
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
219 |
+
elif self.use_ada_layer_norm_continuous:
|
220 |
+
self.norm2 = AdaLayerNormContinuous(
|
221 |
+
dim,
|
222 |
+
ada_norm_continous_conditioning_embedding_dim,
|
223 |
+
norm_elementwise_affine,
|
224 |
+
norm_eps,
|
225 |
+
ada_norm_bias,
|
226 |
+
"rms_norm",
|
227 |
+
)
|
228 |
+
else:
|
229 |
+
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
230 |
+
|
231 |
+
self.attn2 = Attention(
|
232 |
+
query_dim=dim,
|
233 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
234 |
+
heads=num_attention_heads,
|
235 |
+
dim_head=attention_head_dim,
|
236 |
+
dropout=dropout,
|
237 |
+
bias=attention_bias,
|
238 |
+
upcast_attention=upcast_attention,
|
239 |
+
out_bias=attention_out_bias,
|
240 |
+
) # is self-attn if encoder_hidden_states is none
|
241 |
+
else:
|
242 |
+
self.norm2 = None
|
243 |
+
self.attn2 = None
|
244 |
+
|
245 |
+
# 3. Feed-forward
|
246 |
+
if self.use_ada_layer_norm_continuous:
|
247 |
+
self.norm3 = AdaLayerNormContinuous(
|
248 |
+
dim,
|
249 |
+
ada_norm_continous_conditioning_embedding_dim,
|
250 |
+
norm_elementwise_affine,
|
251 |
+
norm_eps,
|
252 |
+
ada_norm_bias,
|
253 |
+
"layer_norm",
|
254 |
+
)
|
255 |
+
elif not self.use_ada_layer_norm_single:
|
256 |
+
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
257 |
+
|
258 |
+
self.ff = FeedForward(
|
259 |
+
dim,
|
260 |
+
dropout=dropout,
|
261 |
+
activation_fn=activation_fn,
|
262 |
+
final_dropout=final_dropout,
|
263 |
+
inner_dim=ff_inner_dim,
|
264 |
+
bias=ff_bias,
|
265 |
+
)
|
266 |
+
|
267 |
+
# 4. Fuser
|
268 |
+
if attention_type == "gated" or attention_type == "gated-text-image":
|
269 |
+
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
|
270 |
+
|
271 |
+
# 5. Scale-shift for PixArt-Alpha.
|
272 |
+
if self.use_ada_layer_norm_single:
|
273 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
274 |
+
|
275 |
+
# let chunk size default to None
|
276 |
+
self._chunk_size = None
|
277 |
+
self._chunk_dim = 0
|
278 |
+
|
279 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
280 |
+
# Sets chunk feed-forward
|
281 |
+
self._chunk_size = chunk_size
|
282 |
+
self._chunk_dim = dim
|
283 |
+
|
284 |
+
def forward(
|
285 |
+
self,
|
286 |
+
hidden_states: torch.FloatTensor,
|
287 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
288 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
289 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
290 |
+
timestep: Optional[torch.LongTensor] = None,
|
291 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
292 |
+
class_labels: Optional[torch.LongTensor] = None,
|
293 |
+
garment_features=None,
|
294 |
+
curr_garment_feat_idx=0,
|
295 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
296 |
+
) -> torch.FloatTensor:
|
297 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
298 |
+
# 0. Self-Attention
|
299 |
+
batch_size = hidden_states.shape[0]
|
300 |
+
|
301 |
+
|
302 |
+
|
303 |
+
if self.use_ada_layer_norm:
|
304 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
305 |
+
elif self.use_ada_layer_norm_zero:
|
306 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
307 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
308 |
+
)
|
309 |
+
elif self.use_layer_norm:
|
310 |
+
norm_hidden_states = self.norm1(hidden_states)
|
311 |
+
elif self.use_ada_layer_norm_continuous:
|
312 |
+
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
313 |
+
elif self.use_ada_layer_norm_single:
|
314 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
315 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
316 |
+
).chunk(6, dim=1)
|
317 |
+
norm_hidden_states = self.norm1(hidden_states)
|
318 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
319 |
+
norm_hidden_states = norm_hidden_states.squeeze(1)
|
320 |
+
else:
|
321 |
+
raise ValueError("Incorrect norm used")
|
322 |
+
|
323 |
+
if self.pos_embed is not None:
|
324 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
325 |
+
|
326 |
+
# 1. Retrieve lora scale.
|
327 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
328 |
+
|
329 |
+
# 2. Prepare GLIGEN inputs
|
330 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
331 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
332 |
+
|
333 |
+
|
334 |
+
modify_norm_hidden_states = torch.cat([norm_hidden_states,garment_features[curr_garment_feat_idx]], dim=1)
|
335 |
+
curr_garment_feat_idx +=1
|
336 |
+
attn_output = self.attn1(
|
337 |
+
#norm_hidden_states,
|
338 |
+
modify_norm_hidden_states,
|
339 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
340 |
+
attention_mask=attention_mask,
|
341 |
+
**cross_attention_kwargs,
|
342 |
+
)
|
343 |
+
if self.use_ada_layer_norm_zero:
|
344 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
345 |
+
elif self.use_ada_layer_norm_single:
|
346 |
+
attn_output = gate_msa * attn_output
|
347 |
+
|
348 |
+
hidden_states = attn_output[:,:hidden_states.shape[-2],:] + hidden_states
|
349 |
+
|
350 |
+
|
351 |
+
|
352 |
+
|
353 |
+
if hidden_states.ndim == 4:
|
354 |
+
hidden_states = hidden_states.squeeze(1)
|
355 |
+
|
356 |
+
# 2.5 GLIGEN Control
|
357 |
+
if gligen_kwargs is not None:
|
358 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
359 |
+
|
360 |
+
# 3. Cross-Attention
|
361 |
+
if self.attn2 is not None:
|
362 |
+
if self.use_ada_layer_norm:
|
363 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
364 |
+
elif self.use_ada_layer_norm_zero or self.use_layer_norm:
|
365 |
+
norm_hidden_states = self.norm2(hidden_states)
|
366 |
+
elif self.use_ada_layer_norm_single:
|
367 |
+
# For PixArt norm2 isn't applied here:
|
368 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
369 |
+
norm_hidden_states = hidden_states
|
370 |
+
elif self.use_ada_layer_norm_continuous:
|
371 |
+
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
372 |
+
else:
|
373 |
+
raise ValueError("Incorrect norm")
|
374 |
+
|
375 |
+
if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
|
376 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
377 |
+
|
378 |
+
attn_output = self.attn2(
|
379 |
+
norm_hidden_states,
|
380 |
+
encoder_hidden_states=encoder_hidden_states,
|
381 |
+
attention_mask=encoder_attention_mask,
|
382 |
+
**cross_attention_kwargs,
|
383 |
+
)
|
384 |
+
hidden_states = attn_output + hidden_states
|
385 |
+
|
386 |
+
# 4. Feed-forward
|
387 |
+
if self.use_ada_layer_norm_continuous:
|
388 |
+
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
389 |
+
elif not self.use_ada_layer_norm_single:
|
390 |
+
norm_hidden_states = self.norm3(hidden_states)
|
391 |
+
|
392 |
+
if self.use_ada_layer_norm_zero:
|
393 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
394 |
+
|
395 |
+
if self.use_ada_layer_norm_single:
|
396 |
+
norm_hidden_states = self.norm2(hidden_states)
|
397 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
398 |
+
|
399 |
+
if self._chunk_size is not None:
|
400 |
+
# "feed_forward_chunk_size" can be used to save memory
|
401 |
+
ff_output = _chunked_feed_forward(
|
402 |
+
self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
|
403 |
+
)
|
404 |
+
else:
|
405 |
+
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
|
406 |
+
|
407 |
+
if self.use_ada_layer_norm_zero:
|
408 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
409 |
+
elif self.use_ada_layer_norm_single:
|
410 |
+
ff_output = gate_mlp * ff_output
|
411 |
+
|
412 |
+
hidden_states = ff_output + hidden_states
|
413 |
+
if hidden_states.ndim == 4:
|
414 |
+
hidden_states = hidden_states.squeeze(1)
|
415 |
+
return hidden_states,curr_garment_feat_idx
|
416 |
+
|
417 |
+
|
418 |
+
@maybe_allow_in_graph
|
419 |
+
class TemporalBasicTransformerBlock(nn.Module):
|
420 |
+
r"""
|
421 |
+
A basic Transformer block for video like data.
|
422 |
+
|
423 |
+
Parameters:
|
424 |
+
dim (`int`): The number of channels in the input and output.
|
425 |
+
time_mix_inner_dim (`int`): The number of channels for temporal attention.
|
426 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
427 |
+
attention_head_dim (`int`): The number of channels in each head.
|
428 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
429 |
+
"""
|
430 |
+
|
431 |
+
def __init__(
|
432 |
+
self,
|
433 |
+
dim: int,
|
434 |
+
time_mix_inner_dim: int,
|
435 |
+
num_attention_heads: int,
|
436 |
+
attention_head_dim: int,
|
437 |
+
cross_attention_dim: Optional[int] = None,
|
438 |
+
):
|
439 |
+
super().__init__()
|
440 |
+
self.is_res = dim == time_mix_inner_dim
|
441 |
+
|
442 |
+
self.norm_in = nn.LayerNorm(dim)
|
443 |
+
|
444 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
445 |
+
# 1. Self-Attn
|
446 |
+
self.norm_in = nn.LayerNorm(dim)
|
447 |
+
self.ff_in = FeedForward(
|
448 |
+
dim,
|
449 |
+
dim_out=time_mix_inner_dim,
|
450 |
+
activation_fn="geglu",
|
451 |
+
)
|
452 |
+
|
453 |
+
self.norm1 = nn.LayerNorm(time_mix_inner_dim)
|
454 |
+
self.attn1 = Attention(
|
455 |
+
query_dim=time_mix_inner_dim,
|
456 |
+
heads=num_attention_heads,
|
457 |
+
dim_head=attention_head_dim,
|
458 |
+
cross_attention_dim=None,
|
459 |
+
)
|
460 |
+
|
461 |
+
# 2. Cross-Attn
|
462 |
+
if cross_attention_dim is not None:
|
463 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
464 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
465 |
+
# the second cross attention block.
|
466 |
+
self.norm2 = nn.LayerNorm(time_mix_inner_dim)
|
467 |
+
self.attn2 = Attention(
|
468 |
+
query_dim=time_mix_inner_dim,
|
469 |
+
cross_attention_dim=cross_attention_dim,
|
470 |
+
heads=num_attention_heads,
|
471 |
+
dim_head=attention_head_dim,
|
472 |
+
) # is self-attn if encoder_hidden_states is none
|
473 |
+
else:
|
474 |
+
self.norm2 = None
|
475 |
+
self.attn2 = None
|
476 |
+
|
477 |
+
# 3. Feed-forward
|
478 |
+
self.norm3 = nn.LayerNorm(time_mix_inner_dim)
|
479 |
+
self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
|
480 |
+
|
481 |
+
# let chunk size default to None
|
482 |
+
self._chunk_size = None
|
483 |
+
self._chunk_dim = None
|
484 |
+
|
485 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
|
486 |
+
# Sets chunk feed-forward
|
487 |
+
self._chunk_size = chunk_size
|
488 |
+
# chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
|
489 |
+
self._chunk_dim = 1
|
490 |
+
|
491 |
+
def forward(
|
492 |
+
self,
|
493 |
+
hidden_states: torch.FloatTensor,
|
494 |
+
num_frames: int,
|
495 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
496 |
+
) -> torch.FloatTensor:
|
497 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
498 |
+
# 0. Self-Attention
|
499 |
+
batch_size = hidden_states.shape[0]
|
500 |
+
|
501 |
+
batch_frames, seq_length, channels = hidden_states.shape
|
502 |
+
batch_size = batch_frames // num_frames
|
503 |
+
|
504 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
|
505 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
506 |
+
hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
|
507 |
+
|
508 |
+
residual = hidden_states
|
509 |
+
hidden_states = self.norm_in(hidden_states)
|
510 |
+
|
511 |
+
if self._chunk_size is not None:
|
512 |
+
hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
|
513 |
+
else:
|
514 |
+
hidden_states = self.ff_in(hidden_states)
|
515 |
+
|
516 |
+
if self.is_res:
|
517 |
+
hidden_states = hidden_states + residual
|
518 |
+
|
519 |
+
norm_hidden_states = self.norm1(hidden_states)
|
520 |
+
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
|
521 |
+
hidden_states = attn_output + hidden_states
|
522 |
+
|
523 |
+
# 3. Cross-Attention
|
524 |
+
if self.attn2 is not None:
|
525 |
+
norm_hidden_states = self.norm2(hidden_states)
|
526 |
+
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
|
527 |
+
hidden_states = attn_output + hidden_states
|
528 |
+
|
529 |
+
# 4. Feed-forward
|
530 |
+
norm_hidden_states = self.norm3(hidden_states)
|
531 |
+
|
532 |
+
if self._chunk_size is not None:
|
533 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
534 |
+
else:
|
535 |
+
ff_output = self.ff(norm_hidden_states)
|
536 |
+
|
537 |
+
if self.is_res:
|
538 |
+
hidden_states = ff_output + hidden_states
|
539 |
+
else:
|
540 |
+
hidden_states = ff_output
|
541 |
+
|
542 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
|
543 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
544 |
+
hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
|
545 |
+
|
546 |
+
return hidden_states
|
547 |
+
|
548 |
+
|
549 |
+
class SkipFFTransformerBlock(nn.Module):
|
550 |
+
def __init__(
|
551 |
+
self,
|
552 |
+
dim: int,
|
553 |
+
num_attention_heads: int,
|
554 |
+
attention_head_dim: int,
|
555 |
+
kv_input_dim: int,
|
556 |
+
kv_input_dim_proj_use_bias: bool,
|
557 |
+
dropout=0.0,
|
558 |
+
cross_attention_dim: Optional[int] = None,
|
559 |
+
attention_bias: bool = False,
|
560 |
+
attention_out_bias: bool = True,
|
561 |
+
):
|
562 |
+
super().__init__()
|
563 |
+
if kv_input_dim != dim:
|
564 |
+
self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
|
565 |
+
else:
|
566 |
+
self.kv_mapper = None
|
567 |
+
|
568 |
+
self.norm1 = RMSNorm(dim, 1e-06)
|
569 |
+
|
570 |
+
self.attn1 = Attention(
|
571 |
+
query_dim=dim,
|
572 |
+
heads=num_attention_heads,
|
573 |
+
dim_head=attention_head_dim,
|
574 |
+
dropout=dropout,
|
575 |
+
bias=attention_bias,
|
576 |
+
cross_attention_dim=cross_attention_dim,
|
577 |
+
out_bias=attention_out_bias,
|
578 |
+
)
|
579 |
+
|
580 |
+
self.norm2 = RMSNorm(dim, 1e-06)
|
581 |
+
|
582 |
+
self.attn2 = Attention(
|
583 |
+
query_dim=dim,
|
584 |
+
cross_attention_dim=cross_attention_dim,
|
585 |
+
heads=num_attention_heads,
|
586 |
+
dim_head=attention_head_dim,
|
587 |
+
dropout=dropout,
|
588 |
+
bias=attention_bias,
|
589 |
+
out_bias=attention_out_bias,
|
590 |
+
)
|
591 |
+
|
592 |
+
def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
|
593 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
594 |
+
|
595 |
+
if self.kv_mapper is not None:
|
596 |
+
encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
|
597 |
+
|
598 |
+
norm_hidden_states = self.norm1(hidden_states)
|
599 |
+
|
600 |
+
attn_output = self.attn1(
|
601 |
+
norm_hidden_states,
|
602 |
+
encoder_hidden_states=encoder_hidden_states,
|
603 |
+
**cross_attention_kwargs,
|
604 |
+
)
|
605 |
+
|
606 |
+
hidden_states = attn_output + hidden_states
|
607 |
+
|
608 |
+
norm_hidden_states = self.norm2(hidden_states)
|
609 |
+
|
610 |
+
attn_output = self.attn2(
|
611 |
+
norm_hidden_states,
|
612 |
+
encoder_hidden_states=encoder_hidden_states,
|
613 |
+
**cross_attention_kwargs,
|
614 |
+
)
|
615 |
+
|
616 |
+
hidden_states = attn_output + hidden_states
|
617 |
+
|
618 |
+
return hidden_states
|
619 |
+
|
620 |
+
|
621 |
+
class FeedForward(nn.Module):
|
622 |
+
r"""
|
623 |
+
A feed-forward layer.
|
624 |
+
|
625 |
+
Parameters:
|
626 |
+
dim (`int`): The number of channels in the input.
|
627 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
628 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
629 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
630 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
631 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
632 |
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
633 |
+
"""
|
634 |
+
|
635 |
+
def __init__(
|
636 |
+
self,
|
637 |
+
dim: int,
|
638 |
+
dim_out: Optional[int] = None,
|
639 |
+
mult: int = 4,
|
640 |
+
dropout: float = 0.0,
|
641 |
+
activation_fn: str = "geglu",
|
642 |
+
final_dropout: bool = False,
|
643 |
+
inner_dim=None,
|
644 |
+
bias: bool = True,
|
645 |
+
):
|
646 |
+
super().__init__()
|
647 |
+
if inner_dim is None:
|
648 |
+
inner_dim = int(dim * mult)
|
649 |
+
dim_out = dim_out if dim_out is not None else dim
|
650 |
+
linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
|
651 |
+
|
652 |
+
if activation_fn == "gelu":
|
653 |
+
act_fn = GELU(dim, inner_dim, bias=bias)
|
654 |
+
if activation_fn == "gelu-approximate":
|
655 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
|
656 |
+
elif activation_fn == "geglu":
|
657 |
+
act_fn = GEGLU(dim, inner_dim, bias=bias)
|
658 |
+
elif activation_fn == "geglu-approximate":
|
659 |
+
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
|
660 |
+
|
661 |
+
self.net = nn.ModuleList([])
|
662 |
+
# project in
|
663 |
+
self.net.append(act_fn)
|
664 |
+
# project dropout
|
665 |
+
self.net.append(nn.Dropout(dropout))
|
666 |
+
# project out
|
667 |
+
self.net.append(linear_cls(inner_dim, dim_out, bias=bias))
|
668 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
669 |
+
if final_dropout:
|
670 |
+
self.net.append(nn.Dropout(dropout))
|
671 |
+
|
672 |
+
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
|
673 |
+
compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
|
674 |
+
for module in self.net:
|
675 |
+
if isinstance(module, compatible_cls):
|
676 |
+
hidden_states = module(hidden_states, scale)
|
677 |
+
else:
|
678 |
+
hidden_states = module(hidden_states)
|
679 |
+
return hidden_states
|
src/transformerhacked_garmnet.py
ADDED
@@ -0,0 +1,460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, Optional
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
23 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_torch_version
|
24 |
+
from src.attentionhacked_garmnet import BasicTransformerBlock
|
25 |
+
from diffusers.models.embeddings import PatchEmbed, PixArtAlphaTextProjection
|
26 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
27 |
+
from diffusers.models.modeling_utils import ModelMixin
|
28 |
+
from diffusers.models.normalization import AdaLayerNormSingle
|
29 |
+
|
30 |
+
|
31 |
+
@dataclass
|
32 |
+
class Transformer2DModelOutput(BaseOutput):
|
33 |
+
"""
|
34 |
+
The output of [`Transformer2DModel`].
|
35 |
+
|
36 |
+
Args:
|
37 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
38 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
39 |
+
distributions for the unnoised latent pixels.
|
40 |
+
"""
|
41 |
+
|
42 |
+
sample: torch.FloatTensor
|
43 |
+
|
44 |
+
|
45 |
+
class Transformer2DModel(ModelMixin, ConfigMixin):
|
46 |
+
"""
|
47 |
+
A 2D Transformer model for image-like data.
|
48 |
+
|
49 |
+
Parameters:
|
50 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
51 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
52 |
+
in_channels (`int`, *optional*):
|
53 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
54 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
55 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
56 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
57 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
58 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
59 |
+
num_vector_embeds (`int`, *optional*):
|
60 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
61 |
+
Includes the class for the masked latent pixel.
|
62 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
63 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
64 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
65 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
66 |
+
added to the hidden states.
|
67 |
+
|
68 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
69 |
+
attention_bias (`bool`, *optional*):
|
70 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
71 |
+
"""
|
72 |
+
|
73 |
+
_supports_gradient_checkpointing = True
|
74 |
+
|
75 |
+
@register_to_config
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
num_attention_heads: int = 16,
|
79 |
+
attention_head_dim: int = 88,
|
80 |
+
in_channels: Optional[int] = None,
|
81 |
+
out_channels: Optional[int] = None,
|
82 |
+
num_layers: int = 1,
|
83 |
+
dropout: float = 0.0,
|
84 |
+
norm_num_groups: int = 32,
|
85 |
+
cross_attention_dim: Optional[int] = None,
|
86 |
+
attention_bias: bool = False,
|
87 |
+
sample_size: Optional[int] = None,
|
88 |
+
num_vector_embeds: Optional[int] = None,
|
89 |
+
patch_size: Optional[int] = None,
|
90 |
+
activation_fn: str = "geglu",
|
91 |
+
num_embeds_ada_norm: Optional[int] = None,
|
92 |
+
use_linear_projection: bool = False,
|
93 |
+
only_cross_attention: bool = False,
|
94 |
+
double_self_attention: bool = False,
|
95 |
+
upcast_attention: bool = False,
|
96 |
+
norm_type: str = "layer_norm",
|
97 |
+
norm_elementwise_affine: bool = True,
|
98 |
+
norm_eps: float = 1e-5,
|
99 |
+
attention_type: str = "default",
|
100 |
+
caption_channels: int = None,
|
101 |
+
):
|
102 |
+
super().__init__()
|
103 |
+
self.use_linear_projection = use_linear_projection
|
104 |
+
self.num_attention_heads = num_attention_heads
|
105 |
+
self.attention_head_dim = attention_head_dim
|
106 |
+
inner_dim = num_attention_heads * attention_head_dim
|
107 |
+
|
108 |
+
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
|
109 |
+
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
|
110 |
+
|
111 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
112 |
+
# Define whether input is continuous or discrete depending on configuration
|
113 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
114 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
115 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
116 |
+
|
117 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
118 |
+
deprecation_message = (
|
119 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
120 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
121 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
122 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
123 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
124 |
+
)
|
125 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
126 |
+
norm_type = "ada_norm"
|
127 |
+
|
128 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
129 |
+
raise ValueError(
|
130 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
131 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
132 |
+
)
|
133 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
134 |
+
raise ValueError(
|
135 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
136 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
137 |
+
)
|
138 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
139 |
+
raise ValueError(
|
140 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
141 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
142 |
+
)
|
143 |
+
|
144 |
+
# 2. Define input layers
|
145 |
+
if self.is_input_continuous:
|
146 |
+
self.in_channels = in_channels
|
147 |
+
|
148 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
149 |
+
if use_linear_projection:
|
150 |
+
self.proj_in = linear_cls(in_channels, inner_dim)
|
151 |
+
else:
|
152 |
+
self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
153 |
+
elif self.is_input_vectorized:
|
154 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
155 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
156 |
+
|
157 |
+
self.height = sample_size
|
158 |
+
self.width = sample_size
|
159 |
+
self.num_vector_embeds = num_vector_embeds
|
160 |
+
self.num_latent_pixels = self.height * self.width
|
161 |
+
|
162 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
163 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
164 |
+
)
|
165 |
+
elif self.is_input_patches:
|
166 |
+
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
167 |
+
|
168 |
+
self.height = sample_size
|
169 |
+
self.width = sample_size
|
170 |
+
|
171 |
+
self.patch_size = patch_size
|
172 |
+
interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1
|
173 |
+
interpolation_scale = max(interpolation_scale, 1)
|
174 |
+
self.pos_embed = PatchEmbed(
|
175 |
+
height=sample_size,
|
176 |
+
width=sample_size,
|
177 |
+
patch_size=patch_size,
|
178 |
+
in_channels=in_channels,
|
179 |
+
embed_dim=inner_dim,
|
180 |
+
interpolation_scale=interpolation_scale,
|
181 |
+
)
|
182 |
+
|
183 |
+
# 3. Define transformers blocks
|
184 |
+
self.transformer_blocks = nn.ModuleList(
|
185 |
+
[
|
186 |
+
BasicTransformerBlock(
|
187 |
+
inner_dim,
|
188 |
+
num_attention_heads,
|
189 |
+
attention_head_dim,
|
190 |
+
dropout=dropout,
|
191 |
+
cross_attention_dim=cross_attention_dim,
|
192 |
+
activation_fn=activation_fn,
|
193 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
194 |
+
attention_bias=attention_bias,
|
195 |
+
only_cross_attention=only_cross_attention,
|
196 |
+
double_self_attention=double_self_attention,
|
197 |
+
upcast_attention=upcast_attention,
|
198 |
+
norm_type=norm_type,
|
199 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
200 |
+
norm_eps=norm_eps,
|
201 |
+
attention_type=attention_type,
|
202 |
+
)
|
203 |
+
for d in range(num_layers)
|
204 |
+
]
|
205 |
+
)
|
206 |
+
|
207 |
+
# 4. Define output layers
|
208 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
209 |
+
if self.is_input_continuous:
|
210 |
+
# TODO: should use out_channels for continuous projections
|
211 |
+
if use_linear_projection:
|
212 |
+
self.proj_out = linear_cls(inner_dim, in_channels)
|
213 |
+
else:
|
214 |
+
self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
215 |
+
elif self.is_input_vectorized:
|
216 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
217 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
218 |
+
elif self.is_input_patches and norm_type != "ada_norm_single":
|
219 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
220 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
221 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
222 |
+
elif self.is_input_patches and norm_type == "ada_norm_single":
|
223 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
224 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
|
225 |
+
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
226 |
+
|
227 |
+
# 5. PixArt-Alpha blocks.
|
228 |
+
self.adaln_single = None
|
229 |
+
self.use_additional_conditions = False
|
230 |
+
if norm_type == "ada_norm_single":
|
231 |
+
self.use_additional_conditions = self.config.sample_size == 128
|
232 |
+
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
|
233 |
+
# additional conditions until we find better name
|
234 |
+
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
|
235 |
+
|
236 |
+
self.caption_projection = None
|
237 |
+
if caption_channels is not None:
|
238 |
+
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
|
239 |
+
|
240 |
+
self.gradient_checkpointing = False
|
241 |
+
|
242 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
243 |
+
if hasattr(module, "gradient_checkpointing"):
|
244 |
+
module.gradient_checkpointing = value
|
245 |
+
|
246 |
+
def forward(
|
247 |
+
self,
|
248 |
+
hidden_states: torch.Tensor,
|
249 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
250 |
+
timestep: Optional[torch.LongTensor] = None,
|
251 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
252 |
+
class_labels: Optional[torch.LongTensor] = None,
|
253 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
254 |
+
attention_mask: Optional[torch.Tensor] = None,
|
255 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
256 |
+
return_dict: bool = True,
|
257 |
+
):
|
258 |
+
"""
|
259 |
+
The [`Transformer2DModel`] forward method.
|
260 |
+
|
261 |
+
Args:
|
262 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
263 |
+
Input `hidden_states`.
|
264 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
265 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
266 |
+
self-attention.
|
267 |
+
timestep ( `torch.LongTensor`, *optional*):
|
268 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
269 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
270 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
271 |
+
`AdaLayerZeroNorm`.
|
272 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
273 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
274 |
+
`self.processor` in
|
275 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
276 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
277 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
278 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
279 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
280 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
281 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
282 |
+
|
283 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
284 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
285 |
+
|
286 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
287 |
+
above. This bias will be added to the cross-attention scores.
|
288 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
289 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
290 |
+
tuple.
|
291 |
+
|
292 |
+
Returns:
|
293 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
294 |
+
`tuple` where the first element is the sample tensor.
|
295 |
+
"""
|
296 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
297 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
298 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
299 |
+
# expects mask of shape:
|
300 |
+
# [batch, key_tokens]
|
301 |
+
# adds singleton query_tokens dimension:
|
302 |
+
# [batch, 1, key_tokens]
|
303 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
304 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
305 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
306 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
307 |
+
# assume that mask is expressed as:
|
308 |
+
# (1 = keep, 0 = discard)
|
309 |
+
# convert mask into a bias that can be added to attention scores:
|
310 |
+
# (keep = +0, discard = -10000.0)
|
311 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
312 |
+
attention_mask = attention_mask.unsqueeze(1)
|
313 |
+
|
314 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
315 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
316 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
317 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
318 |
+
|
319 |
+
# Retrieve lora scale.
|
320 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
321 |
+
|
322 |
+
# 1. Input
|
323 |
+
if self.is_input_continuous:
|
324 |
+
batch, _, height, width = hidden_states.shape
|
325 |
+
residual = hidden_states
|
326 |
+
|
327 |
+
hidden_states = self.norm(hidden_states)
|
328 |
+
if not self.use_linear_projection:
|
329 |
+
hidden_states = (
|
330 |
+
self.proj_in(hidden_states, scale=lora_scale)
|
331 |
+
if not USE_PEFT_BACKEND
|
332 |
+
else self.proj_in(hidden_states)
|
333 |
+
)
|
334 |
+
inner_dim = hidden_states.shape[1]
|
335 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
336 |
+
else:
|
337 |
+
inner_dim = hidden_states.shape[1]
|
338 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
339 |
+
hidden_states = (
|
340 |
+
self.proj_in(hidden_states, scale=lora_scale)
|
341 |
+
if not USE_PEFT_BACKEND
|
342 |
+
else self.proj_in(hidden_states)
|
343 |
+
)
|
344 |
+
|
345 |
+
elif self.is_input_vectorized:
|
346 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
347 |
+
elif self.is_input_patches:
|
348 |
+
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
|
349 |
+
hidden_states = self.pos_embed(hidden_states)
|
350 |
+
|
351 |
+
if self.adaln_single is not None:
|
352 |
+
if self.use_additional_conditions and added_cond_kwargs is None:
|
353 |
+
raise ValueError(
|
354 |
+
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
|
355 |
+
)
|
356 |
+
batch_size = hidden_states.shape[0]
|
357 |
+
timestep, embedded_timestep = self.adaln_single(
|
358 |
+
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
359 |
+
)
|
360 |
+
|
361 |
+
# 2. Blocks
|
362 |
+
if self.caption_projection is not None:
|
363 |
+
batch_size = hidden_states.shape[0]
|
364 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
365 |
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
366 |
+
|
367 |
+
garment_features = []
|
368 |
+
for block in self.transformer_blocks:
|
369 |
+
if self.training and self.gradient_checkpointing:
|
370 |
+
|
371 |
+
def create_custom_forward(module, return_dict=None):
|
372 |
+
def custom_forward(*inputs):
|
373 |
+
if return_dict is not None:
|
374 |
+
return module(*inputs, return_dict=return_dict)
|
375 |
+
else:
|
376 |
+
return module(*inputs)
|
377 |
+
|
378 |
+
return custom_forward
|
379 |
+
|
380 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
381 |
+
hidden_states,out_garment_feat = torch.utils.checkpoint.checkpoint(
|
382 |
+
create_custom_forward(block),
|
383 |
+
hidden_states,
|
384 |
+
attention_mask,
|
385 |
+
encoder_hidden_states,
|
386 |
+
encoder_attention_mask,
|
387 |
+
timestep,
|
388 |
+
cross_attention_kwargs,
|
389 |
+
class_labels,
|
390 |
+
**ckpt_kwargs,
|
391 |
+
)
|
392 |
+
else:
|
393 |
+
hidden_states,out_garment_feat = block(
|
394 |
+
hidden_states,
|
395 |
+
attention_mask=attention_mask,
|
396 |
+
encoder_hidden_states=encoder_hidden_states,
|
397 |
+
encoder_attention_mask=encoder_attention_mask,
|
398 |
+
timestep=timestep,
|
399 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
400 |
+
class_labels=class_labels,
|
401 |
+
)
|
402 |
+
garment_features += out_garment_feat
|
403 |
+
# 3. Output
|
404 |
+
if self.is_input_continuous:
|
405 |
+
if not self.use_linear_projection:
|
406 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
407 |
+
hidden_states = (
|
408 |
+
self.proj_out(hidden_states, scale=lora_scale)
|
409 |
+
if not USE_PEFT_BACKEND
|
410 |
+
else self.proj_out(hidden_states)
|
411 |
+
)
|
412 |
+
else:
|
413 |
+
hidden_states = (
|
414 |
+
self.proj_out(hidden_states, scale=lora_scale)
|
415 |
+
if not USE_PEFT_BACKEND
|
416 |
+
else self.proj_out(hidden_states)
|
417 |
+
)
|
418 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
419 |
+
|
420 |
+
output = hidden_states + residual
|
421 |
+
elif self.is_input_vectorized:
|
422 |
+
hidden_states = self.norm_out(hidden_states)
|
423 |
+
logits = self.out(hidden_states)
|
424 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
425 |
+
logits = logits.permute(0, 2, 1)
|
426 |
+
|
427 |
+
# log(p(x_0))
|
428 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
429 |
+
|
430 |
+
if self.is_input_patches:
|
431 |
+
if self.config.norm_type != "ada_norm_single":
|
432 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
433 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
434 |
+
)
|
435 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
436 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
437 |
+
hidden_states = self.proj_out_2(hidden_states)
|
438 |
+
elif self.config.norm_type == "ada_norm_single":
|
439 |
+
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
|
440 |
+
hidden_states = self.norm_out(hidden_states)
|
441 |
+
# Modulation
|
442 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
443 |
+
hidden_states = self.proj_out(hidden_states)
|
444 |
+
hidden_states = hidden_states.squeeze(1)
|
445 |
+
|
446 |
+
# unpatchify
|
447 |
+
if self.adaln_single is None:
|
448 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
449 |
+
hidden_states = hidden_states.reshape(
|
450 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
451 |
+
)
|
452 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
453 |
+
output = hidden_states.reshape(
|
454 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
455 |
+
)
|
456 |
+
|
457 |
+
if not return_dict:
|
458 |
+
return (output,) ,garment_features
|
459 |
+
|
460 |
+
return Transformer2DModelOutput(sample=output),garment_features
|
src/transformerhacked_tryon.py
ADDED
@@ -0,0 +1,467 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, Optional
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
23 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_torch_version
|
24 |
+
from src.attentionhacked_tryon import BasicTransformerBlock
|
25 |
+
from diffusers.models.embeddings import PatchEmbed, PixArtAlphaTextProjection
|
26 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
27 |
+
from diffusers.models.modeling_utils import ModelMixin
|
28 |
+
from diffusers.models.normalization import AdaLayerNormSingle
|
29 |
+
|
30 |
+
|
31 |
+
@dataclass
|
32 |
+
class Transformer2DModelOutput(BaseOutput):
|
33 |
+
"""
|
34 |
+
The output of [`Transformer2DModel`].
|
35 |
+
|
36 |
+
Args:
|
37 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
38 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
39 |
+
distributions for the unnoised latent pixels.
|
40 |
+
"""
|
41 |
+
|
42 |
+
sample: torch.FloatTensor
|
43 |
+
|
44 |
+
|
45 |
+
class Transformer2DModel(ModelMixin, ConfigMixin):
|
46 |
+
"""
|
47 |
+
A 2D Transformer model for image-like data.
|
48 |
+
|
49 |
+
Parameters:
|
50 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
51 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
52 |
+
in_channels (`int`, *optional*):
|
53 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
54 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
55 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
56 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
57 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
58 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
59 |
+
num_vector_embeds (`int`, *optional*):
|
60 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
61 |
+
Includes the class for the masked latent pixel.
|
62 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
63 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
64 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
65 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
66 |
+
added to the hidden states.
|
67 |
+
|
68 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
69 |
+
attention_bias (`bool`, *optional*):
|
70 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
71 |
+
"""
|
72 |
+
|
73 |
+
_supports_gradient_checkpointing = True
|
74 |
+
|
75 |
+
@register_to_config
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
num_attention_heads: int = 16,
|
79 |
+
attention_head_dim: int = 88,
|
80 |
+
in_channels: Optional[int] = None,
|
81 |
+
out_channels: Optional[int] = None,
|
82 |
+
num_layers: int = 1,
|
83 |
+
dropout: float = 0.0,
|
84 |
+
norm_num_groups: int = 32,
|
85 |
+
cross_attention_dim: Optional[int] = None,
|
86 |
+
attention_bias: bool = False,
|
87 |
+
sample_size: Optional[int] = None,
|
88 |
+
num_vector_embeds: Optional[int] = None,
|
89 |
+
patch_size: Optional[int] = None,
|
90 |
+
activation_fn: str = "geglu",
|
91 |
+
num_embeds_ada_norm: Optional[int] = None,
|
92 |
+
use_linear_projection: bool = False,
|
93 |
+
only_cross_attention: bool = False,
|
94 |
+
double_self_attention: bool = False,
|
95 |
+
upcast_attention: bool = False,
|
96 |
+
norm_type: str = "layer_norm",
|
97 |
+
norm_elementwise_affine: bool = True,
|
98 |
+
norm_eps: float = 1e-5,
|
99 |
+
attention_type: str = "default",
|
100 |
+
caption_channels: int = None,
|
101 |
+
):
|
102 |
+
super().__init__()
|
103 |
+
self.use_linear_projection = use_linear_projection
|
104 |
+
self.num_attention_heads = num_attention_heads
|
105 |
+
self.attention_head_dim = attention_head_dim
|
106 |
+
inner_dim = num_attention_heads * attention_head_dim
|
107 |
+
|
108 |
+
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
|
109 |
+
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
|
110 |
+
|
111 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
112 |
+
# Define whether input is continuous or discrete depending on configuration
|
113 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
114 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
115 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
116 |
+
|
117 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
118 |
+
deprecation_message = (
|
119 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
120 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
121 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
122 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
123 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
124 |
+
)
|
125 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
126 |
+
norm_type = "ada_norm"
|
127 |
+
|
128 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
129 |
+
raise ValueError(
|
130 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
131 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
132 |
+
)
|
133 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
134 |
+
raise ValueError(
|
135 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
136 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
137 |
+
)
|
138 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
139 |
+
raise ValueError(
|
140 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
141 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
142 |
+
)
|
143 |
+
|
144 |
+
# 2. Define input layers
|
145 |
+
if self.is_input_continuous:
|
146 |
+
self.in_channels = in_channels
|
147 |
+
|
148 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
149 |
+
if use_linear_projection:
|
150 |
+
self.proj_in = linear_cls(in_channels, inner_dim)
|
151 |
+
else:
|
152 |
+
self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
153 |
+
elif self.is_input_vectorized:
|
154 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
155 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
156 |
+
|
157 |
+
self.height = sample_size
|
158 |
+
self.width = sample_size
|
159 |
+
self.num_vector_embeds = num_vector_embeds
|
160 |
+
self.num_latent_pixels = self.height * self.width
|
161 |
+
|
162 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
163 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
164 |
+
)
|
165 |
+
elif self.is_input_patches:
|
166 |
+
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
167 |
+
|
168 |
+
self.height = sample_size
|
169 |
+
self.width = sample_size
|
170 |
+
|
171 |
+
self.patch_size = patch_size
|
172 |
+
interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1
|
173 |
+
interpolation_scale = max(interpolation_scale, 1)
|
174 |
+
self.pos_embed = PatchEmbed(
|
175 |
+
height=sample_size,
|
176 |
+
width=sample_size,
|
177 |
+
patch_size=patch_size,
|
178 |
+
in_channels=in_channels,
|
179 |
+
embed_dim=inner_dim,
|
180 |
+
interpolation_scale=interpolation_scale,
|
181 |
+
)
|
182 |
+
|
183 |
+
# 3. Define transformers blocks
|
184 |
+
self.transformer_blocks = nn.ModuleList(
|
185 |
+
[
|
186 |
+
BasicTransformerBlock(
|
187 |
+
inner_dim,
|
188 |
+
num_attention_heads,
|
189 |
+
attention_head_dim,
|
190 |
+
dropout=dropout,
|
191 |
+
cross_attention_dim=cross_attention_dim,
|
192 |
+
activation_fn=activation_fn,
|
193 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
194 |
+
attention_bias=attention_bias,
|
195 |
+
only_cross_attention=only_cross_attention,
|
196 |
+
double_self_attention=double_self_attention,
|
197 |
+
upcast_attention=upcast_attention,
|
198 |
+
norm_type=norm_type,
|
199 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
200 |
+
norm_eps=norm_eps,
|
201 |
+
attention_type=attention_type,
|
202 |
+
)
|
203 |
+
for d in range(num_layers)
|
204 |
+
]
|
205 |
+
)
|
206 |
+
|
207 |
+
# 4. Define output layers
|
208 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
209 |
+
if self.is_input_continuous:
|
210 |
+
# TODO: should use out_channels for continuous projections
|
211 |
+
if use_linear_projection:
|
212 |
+
self.proj_out = linear_cls(inner_dim, in_channels)
|
213 |
+
else:
|
214 |
+
self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
215 |
+
elif self.is_input_vectorized:
|
216 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
217 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
218 |
+
elif self.is_input_patches and norm_type != "ada_norm_single":
|
219 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
220 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
221 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
222 |
+
elif self.is_input_patches and norm_type == "ada_norm_single":
|
223 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
224 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
|
225 |
+
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
226 |
+
|
227 |
+
# 5. PixArt-Alpha blocks.
|
228 |
+
self.adaln_single = None
|
229 |
+
self.use_additional_conditions = False
|
230 |
+
if norm_type == "ada_norm_single":
|
231 |
+
self.use_additional_conditions = self.config.sample_size == 128
|
232 |
+
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
|
233 |
+
# additional conditions until we find better name
|
234 |
+
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
|
235 |
+
|
236 |
+
self.caption_projection = None
|
237 |
+
if caption_channels is not None:
|
238 |
+
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
|
239 |
+
|
240 |
+
self.gradient_checkpointing = False
|
241 |
+
|
242 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
243 |
+
if hasattr(module, "gradient_checkpointing"):
|
244 |
+
module.gradient_checkpointing = value
|
245 |
+
|
246 |
+
def forward(
|
247 |
+
self,
|
248 |
+
hidden_states: torch.Tensor,
|
249 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
250 |
+
timestep: Optional[torch.LongTensor] = None,
|
251 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
252 |
+
class_labels: Optional[torch.LongTensor] = None,
|
253 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
254 |
+
attention_mask: Optional[torch.Tensor] = None,
|
255 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
256 |
+
garment_features=None,
|
257 |
+
curr_garment_feat_idx=0,
|
258 |
+
return_dict: bool = True,
|
259 |
+
):
|
260 |
+
"""
|
261 |
+
The [`Transformer2DModel`] forward method.
|
262 |
+
|
263 |
+
Args:
|
264 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
265 |
+
Input `hidden_states`.
|
266 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
267 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
268 |
+
self-attention.
|
269 |
+
timestep ( `torch.LongTensor`, *optional*):
|
270 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
271 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
272 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
273 |
+
`AdaLayerZeroNorm`.
|
274 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
275 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
276 |
+
`self.processor` in
|
277 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
278 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
279 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
280 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
281 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
282 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
283 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
284 |
+
|
285 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
286 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
287 |
+
|
288 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
289 |
+
above. This bias will be added to the cross-attention scores.
|
290 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
291 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
292 |
+
tuple.
|
293 |
+
|
294 |
+
Returns:
|
295 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
296 |
+
`tuple` where the first element is the sample tensor.
|
297 |
+
"""
|
298 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
299 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
300 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
301 |
+
# expects mask of shape:
|
302 |
+
# [batch, key_tokens]
|
303 |
+
# adds singleton query_tokens dimension:
|
304 |
+
# [batch, 1, key_tokens]
|
305 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
306 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
307 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
308 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
309 |
+
# assume that mask is expressed as:
|
310 |
+
# (1 = keep, 0 = discard)
|
311 |
+
# convert mask into a bias that can be added to attention scores:
|
312 |
+
# (keep = +0, discard = -10000.0)
|
313 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
314 |
+
attention_mask = attention_mask.unsqueeze(1)
|
315 |
+
|
316 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
317 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
318 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
319 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
320 |
+
|
321 |
+
# Retrieve lora scale.
|
322 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
323 |
+
|
324 |
+
# 1. Input
|
325 |
+
if self.is_input_continuous:
|
326 |
+
batch, _, height, width = hidden_states.shape
|
327 |
+
residual = hidden_states
|
328 |
+
|
329 |
+
hidden_states = self.norm(hidden_states)
|
330 |
+
if not self.use_linear_projection:
|
331 |
+
hidden_states = (
|
332 |
+
self.proj_in(hidden_states, scale=lora_scale)
|
333 |
+
if not USE_PEFT_BACKEND
|
334 |
+
else self.proj_in(hidden_states)
|
335 |
+
)
|
336 |
+
inner_dim = hidden_states.shape[1]
|
337 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
338 |
+
else:
|
339 |
+
inner_dim = hidden_states.shape[1]
|
340 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
341 |
+
hidden_states = (
|
342 |
+
self.proj_in(hidden_states, scale=lora_scale)
|
343 |
+
if not USE_PEFT_BACKEND
|
344 |
+
else self.proj_in(hidden_states)
|
345 |
+
)
|
346 |
+
|
347 |
+
elif self.is_input_vectorized:
|
348 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
349 |
+
elif self.is_input_patches:
|
350 |
+
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
|
351 |
+
hidden_states = self.pos_embed(hidden_states)
|
352 |
+
|
353 |
+
if self.adaln_single is not None:
|
354 |
+
if self.use_additional_conditions and added_cond_kwargs is None:
|
355 |
+
raise ValueError(
|
356 |
+
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
|
357 |
+
)
|
358 |
+
batch_size = hidden_states.shape[0]
|
359 |
+
timestep, embedded_timestep = self.adaln_single(
|
360 |
+
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
361 |
+
)
|
362 |
+
|
363 |
+
# 2. Blocks
|
364 |
+
if self.caption_projection is not None:
|
365 |
+
batch_size = hidden_states.shape[0]
|
366 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
367 |
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
368 |
+
|
369 |
+
|
370 |
+
for block in self.transformer_blocks:
|
371 |
+
if self.training and self.gradient_checkpointing:
|
372 |
+
|
373 |
+
def create_custom_forward(module, return_dict=None):
|
374 |
+
def custom_forward(*inputs):
|
375 |
+
if return_dict is not None:
|
376 |
+
return module(*inputs, return_dict=return_dict)
|
377 |
+
else:
|
378 |
+
return module(*inputs)
|
379 |
+
|
380 |
+
return custom_forward
|
381 |
+
|
382 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
383 |
+
hidden_states,curr_garment_feat_idx = torch.utils.checkpoint.checkpoint(
|
384 |
+
create_custom_forward(block),
|
385 |
+
hidden_states,
|
386 |
+
attention_mask,
|
387 |
+
encoder_hidden_states,
|
388 |
+
encoder_attention_mask,
|
389 |
+
timestep,
|
390 |
+
cross_attention_kwargs,
|
391 |
+
class_labels,
|
392 |
+
garment_features,
|
393 |
+
curr_garment_feat_idx,
|
394 |
+
**ckpt_kwargs,
|
395 |
+
)
|
396 |
+
else:
|
397 |
+
hidden_states,curr_garment_feat_idx = block(
|
398 |
+
hidden_states,
|
399 |
+
attention_mask=attention_mask,
|
400 |
+
encoder_hidden_states=encoder_hidden_states,
|
401 |
+
encoder_attention_mask=encoder_attention_mask,
|
402 |
+
timestep=timestep,
|
403 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
404 |
+
class_labels=class_labels,
|
405 |
+
garment_features=garment_features,
|
406 |
+
curr_garment_feat_idx=curr_garment_feat_idx,
|
407 |
+
)
|
408 |
+
|
409 |
+
|
410 |
+
# 3. Output
|
411 |
+
if self.is_input_continuous:
|
412 |
+
if not self.use_linear_projection:
|
413 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
414 |
+
hidden_states = (
|
415 |
+
self.proj_out(hidden_states, scale=lora_scale)
|
416 |
+
if not USE_PEFT_BACKEND
|
417 |
+
else self.proj_out(hidden_states)
|
418 |
+
)
|
419 |
+
else:
|
420 |
+
hidden_states = (
|
421 |
+
self.proj_out(hidden_states, scale=lora_scale)
|
422 |
+
if not USE_PEFT_BACKEND
|
423 |
+
else self.proj_out(hidden_states)
|
424 |
+
)
|
425 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
426 |
+
|
427 |
+
output = hidden_states + residual
|
428 |
+
elif self.is_input_vectorized:
|
429 |
+
hidden_states = self.norm_out(hidden_states)
|
430 |
+
logits = self.out(hidden_states)
|
431 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
432 |
+
logits = logits.permute(0, 2, 1)
|
433 |
+
|
434 |
+
# log(p(x_0))
|
435 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
436 |
+
|
437 |
+
if self.is_input_patches:
|
438 |
+
if self.config.norm_type != "ada_norm_single":
|
439 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
440 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
441 |
+
)
|
442 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
443 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
444 |
+
hidden_states = self.proj_out_2(hidden_states)
|
445 |
+
elif self.config.norm_type == "ada_norm_single":
|
446 |
+
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
|
447 |
+
hidden_states = self.norm_out(hidden_states)
|
448 |
+
# Modulation
|
449 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
450 |
+
hidden_states = self.proj_out(hidden_states)
|
451 |
+
hidden_states = hidden_states.squeeze(1)
|
452 |
+
|
453 |
+
# unpatchify
|
454 |
+
if self.adaln_single is None:
|
455 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
456 |
+
hidden_states = hidden_states.reshape(
|
457 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
458 |
+
)
|
459 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
460 |
+
output = hidden_states.reshape(
|
461 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
462 |
+
)
|
463 |
+
|
464 |
+
if not return_dict:
|
465 |
+
return (output,),curr_garment_feat_idx
|
466 |
+
|
467 |
+
return Transformer2DModelOutput(sample=output),curr_garment_feat_idx
|
src/tryon_pipeline.py
ADDED
@@ -0,0 +1,1892 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License
|
14 |
+
import inspect
|
15 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
import PIL.Image
|
19 |
+
import torch
|
20 |
+
from transformers import (
|
21 |
+
CLIPImageProcessor,
|
22 |
+
CLIPTextModel,
|
23 |
+
CLIPTextModelWithProjection,
|
24 |
+
CLIPTokenizer,
|
25 |
+
CLIPVisionModelWithProjection,
|
26 |
+
)
|
27 |
+
|
28 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
29 |
+
from diffusers.loaders import (
|
30 |
+
FromSingleFileMixin,
|
31 |
+
IPAdapterMixin,
|
32 |
+
StableDiffusionXLLoraLoaderMixin,
|
33 |
+
TextualInversionLoaderMixin,
|
34 |
+
)
|
35 |
+
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
36 |
+
from diffusers.models.attention_processor import (
|
37 |
+
AttnProcessor2_0,
|
38 |
+
FusedAttnProcessor2_0,
|
39 |
+
LoRAAttnProcessor2_0,
|
40 |
+
LoRAXFormersAttnProcessor,
|
41 |
+
XFormersAttnProcessor,
|
42 |
+
)
|
43 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
44 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
45 |
+
from diffusers.utils import (
|
46 |
+
USE_PEFT_BACKEND,
|
47 |
+
deprecate,
|
48 |
+
is_invisible_watermark_available,
|
49 |
+
is_torch_xla_available,
|
50 |
+
logging,
|
51 |
+
replace_example_docstring,
|
52 |
+
scale_lora_layers,
|
53 |
+
unscale_lora_layers,
|
54 |
+
)
|
55 |
+
from diffusers.utils.torch_utils import randn_tensor
|
56 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
if is_torch_xla_available():
|
61 |
+
import torch_xla.core.xla_model as xm
|
62 |
+
|
63 |
+
XLA_AVAILABLE = True
|
64 |
+
else:
|
65 |
+
XLA_AVAILABLE = False
|
66 |
+
|
67 |
+
|
68 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
69 |
+
|
70 |
+
|
71 |
+
EXAMPLE_DOC_STRING = """
|
72 |
+
Examples:
|
73 |
+
```py
|
74 |
+
>>> import torch
|
75 |
+
>>> from diffusers import StableDiffusionXLInpaintPipeline
|
76 |
+
>>> from diffusers.utils import load_image
|
77 |
+
|
78 |
+
>>> pipe = StableDiffusionXLInpaintPipeline.from_pretrained(
|
79 |
+
... "stabilityai/stable-diffusion-xl-base-1.0",
|
80 |
+
... torch_dtype=torch.float16,
|
81 |
+
... variant="fp16",
|
82 |
+
... use_safetensors=True,
|
83 |
+
... )
|
84 |
+
>>> pipe.to("cuda")
|
85 |
+
|
86 |
+
>>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
87 |
+
>>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
88 |
+
|
89 |
+
>>> init_image = load_image(img_url).convert("RGB")
|
90 |
+
>>> mask_image = load_image(mask_url).convert("RGB")
|
91 |
+
|
92 |
+
>>> prompt = "A majestic tiger sitting on a bench"
|
93 |
+
>>> image = pipe(
|
94 |
+
... prompt=prompt, image=init_image, mask_image=mask_image, num_inference_steps=50, strength=0.80
|
95 |
+
... ).images[0]
|
96 |
+
```
|
97 |
+
"""
|
98 |
+
|
99 |
+
|
100 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
101 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
102 |
+
"""
|
103 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
104 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
105 |
+
"""
|
106 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
107 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
108 |
+
# rescale the results from guidance (fixes overexposure)
|
109 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
110 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
111 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
112 |
+
return noise_cfg
|
113 |
+
|
114 |
+
|
115 |
+
def mask_pil_to_torch(mask, height, width):
|
116 |
+
# preprocess mask
|
117 |
+
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
|
118 |
+
mask = [mask]
|
119 |
+
|
120 |
+
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
|
121 |
+
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
|
122 |
+
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
|
123 |
+
mask = mask.astype(np.float32) / 255.0
|
124 |
+
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
125 |
+
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
126 |
+
|
127 |
+
mask = torch.from_numpy(mask)
|
128 |
+
return mask
|
129 |
+
|
130 |
+
|
131 |
+
def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool = False):
|
132 |
+
"""
|
133 |
+
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
|
134 |
+
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
|
135 |
+
``image`` and ``1`` for the ``mask``.
|
136 |
+
|
137 |
+
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
|
138 |
+
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
|
139 |
+
|
140 |
+
Args:
|
141 |
+
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
|
142 |
+
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
|
143 |
+
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
|
144 |
+
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
|
145 |
+
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
|
146 |
+
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
|
147 |
+
|
148 |
+
|
149 |
+
Raises:
|
150 |
+
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
|
151 |
+
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
|
152 |
+
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
|
153 |
+
(ot the other way around).
|
154 |
+
|
155 |
+
Returns:
|
156 |
+
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
|
157 |
+
dimensions: ``batch x channels x height x width``.
|
158 |
+
"""
|
159 |
+
|
160 |
+
# checkpoint. TOD(Yiyi) - need to clean this up later
|
161 |
+
deprecation_message = "The prepare_mask_and_masked_image method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead"
|
162 |
+
deprecate(
|
163 |
+
"prepare_mask_and_masked_image",
|
164 |
+
"0.30.0",
|
165 |
+
deprecation_message,
|
166 |
+
)
|
167 |
+
if image is None:
|
168 |
+
raise ValueError("`image` input cannot be undefined.")
|
169 |
+
|
170 |
+
if mask is None:
|
171 |
+
raise ValueError("`mask_image` input cannot be undefined.")
|
172 |
+
|
173 |
+
if isinstance(image, torch.Tensor):
|
174 |
+
if not isinstance(mask, torch.Tensor):
|
175 |
+
mask = mask_pil_to_torch(mask, height, width)
|
176 |
+
|
177 |
+
if image.ndim == 3:
|
178 |
+
image = image.unsqueeze(0)
|
179 |
+
|
180 |
+
# Batch and add channel dim for single mask
|
181 |
+
if mask.ndim == 2:
|
182 |
+
mask = mask.unsqueeze(0).unsqueeze(0)
|
183 |
+
|
184 |
+
# Batch single mask or add channel dim
|
185 |
+
if mask.ndim == 3:
|
186 |
+
# Single batched mask, no channel dim or single mask not batched but channel dim
|
187 |
+
if mask.shape[0] == 1:
|
188 |
+
mask = mask.unsqueeze(0)
|
189 |
+
|
190 |
+
# Batched masks no channel dim
|
191 |
+
else:
|
192 |
+
mask = mask.unsqueeze(1)
|
193 |
+
|
194 |
+
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
|
195 |
+
# assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
|
196 |
+
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
|
197 |
+
|
198 |
+
# Check image is in [-1, 1]
|
199 |
+
# if image.min() < -1 or image.max() > 1:
|
200 |
+
# raise ValueError("Image should be in [-1, 1] range")
|
201 |
+
|
202 |
+
# Check mask is in [0, 1]
|
203 |
+
if mask.min() < 0 or mask.max() > 1:
|
204 |
+
raise ValueError("Mask should be in [0, 1] range")
|
205 |
+
|
206 |
+
# Binarize mask
|
207 |
+
mask[mask < 0.5] = 0
|
208 |
+
mask[mask >= 0.5] = 1
|
209 |
+
|
210 |
+
# Image as float32
|
211 |
+
image = image.to(dtype=torch.float32)
|
212 |
+
elif isinstance(mask, torch.Tensor):
|
213 |
+
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
|
214 |
+
else:
|
215 |
+
# preprocess image
|
216 |
+
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
217 |
+
image = [image]
|
218 |
+
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
219 |
+
# resize all images w.r.t passed height an width
|
220 |
+
image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
|
221 |
+
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
222 |
+
image = np.concatenate(image, axis=0)
|
223 |
+
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
224 |
+
image = np.concatenate([i[None, :] for i in image], axis=0)
|
225 |
+
|
226 |
+
image = image.transpose(0, 3, 1, 2)
|
227 |
+
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
228 |
+
|
229 |
+
mask = mask_pil_to_torch(mask, height, width)
|
230 |
+
mask[mask < 0.5] = 0
|
231 |
+
mask[mask >= 0.5] = 1
|
232 |
+
|
233 |
+
if image.shape[1] == 4:
|
234 |
+
# images are in latent space and thus can't
|
235 |
+
# be masked set masked_image to None
|
236 |
+
# we assume that the checkpoint is not an inpainting
|
237 |
+
# checkpoint. TOD(Yiyi) - need to clean this up later
|
238 |
+
masked_image = None
|
239 |
+
else:
|
240 |
+
masked_image = image * (mask < 0.5)
|
241 |
+
|
242 |
+
# n.b. ensure backwards compatibility as old function does not return image
|
243 |
+
if return_image:
|
244 |
+
return mask, masked_image, image
|
245 |
+
|
246 |
+
return mask, masked_image
|
247 |
+
|
248 |
+
|
249 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
250 |
+
def retrieve_latents(
|
251 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
252 |
+
):
|
253 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
254 |
+
return encoder_output.latent_dist.sample(generator)
|
255 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
256 |
+
return encoder_output.latent_dist.mode()
|
257 |
+
elif hasattr(encoder_output, "latents"):
|
258 |
+
return encoder_output.latents
|
259 |
+
else:
|
260 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
261 |
+
|
262 |
+
|
263 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
264 |
+
def retrieve_timesteps(
|
265 |
+
scheduler,
|
266 |
+
num_inference_steps: Optional[int] = None,
|
267 |
+
device: Optional[Union[str, torch.device]] = None,
|
268 |
+
timesteps: Optional[List[int]] = None,
|
269 |
+
**kwargs,
|
270 |
+
):
|
271 |
+
"""
|
272 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
273 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
274 |
+
|
275 |
+
Args:
|
276 |
+
scheduler (`SchedulerMixin`):
|
277 |
+
The scheduler to get timesteps from.
|
278 |
+
num_inference_steps (`int`):
|
279 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
280 |
+
`timesteps` must be `None`.
|
281 |
+
device (`str` or `torch.device`, *optional*):
|
282 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
283 |
+
timesteps (`List[int]`, *optional*):
|
284 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
285 |
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
286 |
+
must be `None`.
|
287 |
+
|
288 |
+
Returns:
|
289 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
290 |
+
second element is the number of inference steps.
|
291 |
+
"""
|
292 |
+
if timesteps is not None:
|
293 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
294 |
+
if not accepts_timesteps:
|
295 |
+
raise ValueError(
|
296 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
297 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
298 |
+
)
|
299 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
300 |
+
timesteps = scheduler.timesteps
|
301 |
+
num_inference_steps = len(timesteps)
|
302 |
+
else:
|
303 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
304 |
+
timesteps = scheduler.timesteps
|
305 |
+
return timesteps, num_inference_steps
|
306 |
+
|
307 |
+
|
308 |
+
class StableDiffusionXLInpaintPipeline(
|
309 |
+
DiffusionPipeline,
|
310 |
+
TextualInversionLoaderMixin,
|
311 |
+
StableDiffusionXLLoraLoaderMixin,
|
312 |
+
FromSingleFileMixin,
|
313 |
+
IPAdapterMixin,
|
314 |
+
):
|
315 |
+
r"""
|
316 |
+
Pipeline for text-to-image generation using Stable Diffusion XL.
|
317 |
+
|
318 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
319 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
320 |
+
|
321 |
+
The pipeline also inherits the following loading methods:
|
322 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
323 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
324 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
325 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
326 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
327 |
+
|
328 |
+
Args:
|
329 |
+
vae ([`AutoencoderKL`]):
|
330 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
331 |
+
text_encoder ([`CLIPTextModel`]):
|
332 |
+
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
333 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
334 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
335 |
+
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
336 |
+
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
337 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
338 |
+
specifically the
|
339 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
340 |
+
variant.
|
341 |
+
tokenizer (`CLIPTokenizer`):
|
342 |
+
Tokenizer of class
|
343 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
344 |
+
tokenizer_2 (`CLIPTokenizer`):
|
345 |
+
Second Tokenizer of class
|
346 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
347 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
348 |
+
scheduler ([`SchedulerMixin`]):
|
349 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
350 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
351 |
+
requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
|
352 |
+
Whether the `unet` requires a aesthetic_score condition to be passed during inference. Also see the config
|
353 |
+
of `stabilityai/stable-diffusion-xl-refiner-1-0`.
|
354 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
355 |
+
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
356 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
357 |
+
add_watermarker (`bool`, *optional*):
|
358 |
+
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
|
359 |
+
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
360 |
+
watermarker will be used.
|
361 |
+
"""
|
362 |
+
|
363 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
|
364 |
+
|
365 |
+
_optional_components = [
|
366 |
+
"tokenizer",
|
367 |
+
"tokenizer_2",
|
368 |
+
"text_encoder",
|
369 |
+
"text_encoder_2",
|
370 |
+
"image_encoder",
|
371 |
+
"feature_extractor",
|
372 |
+
]
|
373 |
+
_callback_tensor_inputs = [
|
374 |
+
"latents",
|
375 |
+
"prompt_embeds",
|
376 |
+
"negative_prompt_embeds",
|
377 |
+
"add_text_embeds",
|
378 |
+
"add_time_ids",
|
379 |
+
"negative_pooled_prompt_embeds",
|
380 |
+
"add_neg_time_ids",
|
381 |
+
"mask",
|
382 |
+
"masked_image_latents",
|
383 |
+
]
|
384 |
+
|
385 |
+
def __init__(
|
386 |
+
self,
|
387 |
+
vae: AutoencoderKL,
|
388 |
+
text_encoder: CLIPTextModel,
|
389 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
390 |
+
tokenizer: CLIPTokenizer,
|
391 |
+
tokenizer_2: CLIPTokenizer,
|
392 |
+
unet: UNet2DConditionModel,
|
393 |
+
scheduler: KarrasDiffusionSchedulers,
|
394 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
395 |
+
feature_extractor: CLIPImageProcessor = None,
|
396 |
+
requires_aesthetics_score: bool = False,
|
397 |
+
force_zeros_for_empty_prompt: bool = True,
|
398 |
+
):
|
399 |
+
super().__init__()
|
400 |
+
|
401 |
+
self.register_modules(
|
402 |
+
vae=vae,
|
403 |
+
text_encoder=text_encoder,
|
404 |
+
text_encoder_2=text_encoder_2,
|
405 |
+
tokenizer=tokenizer,
|
406 |
+
tokenizer_2=tokenizer_2,
|
407 |
+
unet=unet,
|
408 |
+
image_encoder=image_encoder,
|
409 |
+
feature_extractor=feature_extractor,
|
410 |
+
scheduler=scheduler,
|
411 |
+
)
|
412 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
413 |
+
self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
|
414 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
415 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
416 |
+
self.mask_processor = VaeImageProcessor(
|
417 |
+
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
|
418 |
+
)
|
419 |
+
|
420 |
+
|
421 |
+
|
422 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
423 |
+
def enable_vae_slicing(self):
|
424 |
+
r"""
|
425 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
426 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
427 |
+
"""
|
428 |
+
self.vae.enable_slicing()
|
429 |
+
|
430 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
431 |
+
def disable_vae_slicing(self):
|
432 |
+
r"""
|
433 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
434 |
+
computing decoding in one step.
|
435 |
+
"""
|
436 |
+
self.vae.disable_slicing()
|
437 |
+
|
438 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
439 |
+
def enable_vae_tiling(self):
|
440 |
+
r"""
|
441 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
442 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
443 |
+
processing larger images.
|
444 |
+
"""
|
445 |
+
self.vae.enable_tiling()
|
446 |
+
|
447 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
448 |
+
def disable_vae_tiling(self):
|
449 |
+
r"""
|
450 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
451 |
+
computing decoding in one step.
|
452 |
+
"""
|
453 |
+
self.vae.disable_tiling()
|
454 |
+
|
455 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
456 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
457 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
458 |
+
# print(image.shape)
|
459 |
+
if not isinstance(image, torch.Tensor):
|
460 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
461 |
+
|
462 |
+
image = image.to(device=device, dtype=dtype)
|
463 |
+
if output_hidden_states:
|
464 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
465 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
466 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
467 |
+
torch.zeros_like(image), output_hidden_states=True
|
468 |
+
).hidden_states[-2]
|
469 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
470 |
+
num_images_per_prompt, dim=0
|
471 |
+
)
|
472 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
473 |
+
else:
|
474 |
+
image_embeds = self.image_encoder(image).image_embeds
|
475 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
476 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
477 |
+
|
478 |
+
return image_embeds, uncond_image_embeds
|
479 |
+
|
480 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
481 |
+
def prepare_ip_adapter_image_embeds(self, ip_adapter_image, device, num_images_per_prompt):
|
482 |
+
# if not isinstance(ip_adapter_image, list):
|
483 |
+
# ip_adapter_image = [ip_adapter_image]
|
484 |
+
|
485 |
+
# if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
486 |
+
# raise ValueError(
|
487 |
+
# f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
488 |
+
# )
|
489 |
+
output_hidden_state = not isinstance(self.unet.encoder_hid_proj, ImageProjection)
|
490 |
+
# print(output_hidden_state)
|
491 |
+
image_embeds, negative_image_embeds = self.encode_image(
|
492 |
+
ip_adapter_image, device, 1, output_hidden_state
|
493 |
+
)
|
494 |
+
# print(single_image_embeds.shape)
|
495 |
+
# single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
496 |
+
# single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0)
|
497 |
+
# print(single_image_embeds.shape)
|
498 |
+
if self.do_classifier_free_guidance:
|
499 |
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
500 |
+
image_embeds = image_embeds.to(device)
|
501 |
+
|
502 |
+
|
503 |
+
return image_embeds
|
504 |
+
|
505 |
+
|
506 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
507 |
+
def encode_prompt(
|
508 |
+
self,
|
509 |
+
prompt: str,
|
510 |
+
prompt_2: Optional[str] = None,
|
511 |
+
device: Optional[torch.device] = None,
|
512 |
+
num_images_per_prompt: int = 1,
|
513 |
+
do_classifier_free_guidance: bool = True,
|
514 |
+
negative_prompt: Optional[str] = None,
|
515 |
+
negative_prompt_2: Optional[str] = None,
|
516 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
517 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
518 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
519 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
520 |
+
lora_scale: Optional[float] = None,
|
521 |
+
clip_skip: Optional[int] = None,
|
522 |
+
):
|
523 |
+
r"""
|
524 |
+
Encodes the prompt into text encoder hidden states.
|
525 |
+
|
526 |
+
Args:
|
527 |
+
prompt (`str` or `List[str]`, *optional*):
|
528 |
+
prompt to be encoded
|
529 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
530 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
531 |
+
used in both text-encoders
|
532 |
+
device: (`torch.device`):
|
533 |
+
torch device
|
534 |
+
num_images_per_prompt (`int`):
|
535 |
+
number of images that should be generated per prompt
|
536 |
+
do_classifier_free_guidance (`bool`):
|
537 |
+
whether to use classifier free guidance or not
|
538 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
539 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
540 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
541 |
+
less than `1`).
|
542 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
543 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
544 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
545 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
546 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
547 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
548 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
549 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
550 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
551 |
+
argument.
|
552 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
553 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
554 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
555 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
556 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
557 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
558 |
+
input argument.
|
559 |
+
lora_scale (`float`, *optional*):
|
560 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
561 |
+
clip_skip (`int`, *optional*):
|
562 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
563 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
564 |
+
"""
|
565 |
+
device = device or self._execution_device
|
566 |
+
|
567 |
+
# set lora scale so that monkey patched LoRA
|
568 |
+
# function of text encoder can correctly access it
|
569 |
+
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
570 |
+
self._lora_scale = lora_scale
|
571 |
+
|
572 |
+
# dynamically adjust the LoRA scale
|
573 |
+
if self.text_encoder is not None:
|
574 |
+
if not USE_PEFT_BACKEND:
|
575 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
576 |
+
else:
|
577 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
578 |
+
|
579 |
+
if self.text_encoder_2 is not None:
|
580 |
+
if not USE_PEFT_BACKEND:
|
581 |
+
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
582 |
+
else:
|
583 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
584 |
+
|
585 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
586 |
+
|
587 |
+
if prompt is not None:
|
588 |
+
batch_size = len(prompt)
|
589 |
+
else:
|
590 |
+
batch_size = prompt_embeds.shape[0]
|
591 |
+
|
592 |
+
# Define tokenizers and text encoders
|
593 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
594 |
+
text_encoders = (
|
595 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
596 |
+
)
|
597 |
+
|
598 |
+
if prompt_embeds is None:
|
599 |
+
prompt_2 = prompt_2 or prompt
|
600 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
601 |
+
|
602 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
603 |
+
prompt_embeds_list = []
|
604 |
+
prompts = [prompt, prompt_2]
|
605 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
606 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
607 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
608 |
+
|
609 |
+
text_inputs = tokenizer(
|
610 |
+
prompt,
|
611 |
+
padding="max_length",
|
612 |
+
max_length=tokenizer.model_max_length,
|
613 |
+
truncation=True,
|
614 |
+
return_tensors="pt",
|
615 |
+
)
|
616 |
+
|
617 |
+
text_input_ids = text_inputs.input_ids
|
618 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
619 |
+
|
620 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
621 |
+
text_input_ids, untruncated_ids
|
622 |
+
):
|
623 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
624 |
+
logger.warning(
|
625 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
626 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
627 |
+
)
|
628 |
+
|
629 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
630 |
+
|
631 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
632 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
633 |
+
if clip_skip is None:
|
634 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
635 |
+
else:
|
636 |
+
# "2" because SDXL always indexes from the penultimate layer.
|
637 |
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
638 |
+
|
639 |
+
prompt_embeds_list.append(prompt_embeds)
|
640 |
+
|
641 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
642 |
+
|
643 |
+
# get unconditional embeddings for classifier free guidance
|
644 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
645 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
646 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
647 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
648 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
649 |
+
negative_prompt = negative_prompt or ""
|
650 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
651 |
+
|
652 |
+
# normalize str to list
|
653 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
654 |
+
negative_prompt_2 = (
|
655 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
656 |
+
)
|
657 |
+
|
658 |
+
uncond_tokens: List[str]
|
659 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
660 |
+
raise TypeError(
|
661 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
662 |
+
f" {type(prompt)}."
|
663 |
+
)
|
664 |
+
elif batch_size != len(negative_prompt):
|
665 |
+
raise ValueError(
|
666 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
667 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
668 |
+
" the batch size of `prompt`."
|
669 |
+
)
|
670 |
+
else:
|
671 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
672 |
+
|
673 |
+
negative_prompt_embeds_list = []
|
674 |
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
675 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
676 |
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
677 |
+
|
678 |
+
max_length = prompt_embeds.shape[1]
|
679 |
+
uncond_input = tokenizer(
|
680 |
+
negative_prompt,
|
681 |
+
padding="max_length",
|
682 |
+
max_length=max_length,
|
683 |
+
truncation=True,
|
684 |
+
return_tensors="pt",
|
685 |
+
)
|
686 |
+
|
687 |
+
negative_prompt_embeds = text_encoder(
|
688 |
+
uncond_input.input_ids.to(device),
|
689 |
+
output_hidden_states=True,
|
690 |
+
)
|
691 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
692 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
693 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
694 |
+
|
695 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
696 |
+
|
697 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
698 |
+
|
699 |
+
if self.text_encoder_2 is not None:
|
700 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
701 |
+
else:
|
702 |
+
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
703 |
+
|
704 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
705 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
706 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
707 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
708 |
+
|
709 |
+
if do_classifier_free_guidance:
|
710 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
711 |
+
seq_len = negative_prompt_embeds.shape[1]
|
712 |
+
|
713 |
+
if self.text_encoder_2 is not None:
|
714 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
715 |
+
else:
|
716 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
717 |
+
|
718 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
719 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
720 |
+
|
721 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
722 |
+
bs_embed * num_images_per_prompt, -1
|
723 |
+
)
|
724 |
+
if do_classifier_free_guidance:
|
725 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
726 |
+
bs_embed * num_images_per_prompt, -1
|
727 |
+
)
|
728 |
+
|
729 |
+
if self.text_encoder is not None:
|
730 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
731 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
732 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
733 |
+
|
734 |
+
if self.text_encoder_2 is not None:
|
735 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
736 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
737 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
738 |
+
|
739 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
740 |
+
|
741 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
742 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
743 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
744 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
745 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
746 |
+
# and should be between [0, 1]
|
747 |
+
|
748 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
749 |
+
extra_step_kwargs = {}
|
750 |
+
if accepts_eta:
|
751 |
+
extra_step_kwargs["eta"] = eta
|
752 |
+
|
753 |
+
# check if the scheduler accepts generator
|
754 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
755 |
+
if accepts_generator:
|
756 |
+
extra_step_kwargs["generator"] = generator
|
757 |
+
return extra_step_kwargs
|
758 |
+
|
759 |
+
def check_inputs(
|
760 |
+
self,
|
761 |
+
prompt,
|
762 |
+
prompt_2,
|
763 |
+
image,
|
764 |
+
mask_image,
|
765 |
+
height,
|
766 |
+
width,
|
767 |
+
strength,
|
768 |
+
callback_steps,
|
769 |
+
output_type,
|
770 |
+
negative_prompt=None,
|
771 |
+
negative_prompt_2=None,
|
772 |
+
prompt_embeds=None,
|
773 |
+
negative_prompt_embeds=None,
|
774 |
+
callback_on_step_end_tensor_inputs=None,
|
775 |
+
padding_mask_crop=None,
|
776 |
+
):
|
777 |
+
if strength < 0 or strength > 1:
|
778 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
779 |
+
|
780 |
+
if height % 8 != 0 or width % 8 != 0:
|
781 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
782 |
+
|
783 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
784 |
+
raise ValueError(
|
785 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
786 |
+
f" {type(callback_steps)}."
|
787 |
+
)
|
788 |
+
|
789 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
790 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
791 |
+
):
|
792 |
+
raise ValueError(
|
793 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
794 |
+
)
|
795 |
+
|
796 |
+
if prompt is not None and prompt_embeds is not None:
|
797 |
+
raise ValueError(
|
798 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
799 |
+
" only forward one of the two."
|
800 |
+
)
|
801 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
802 |
+
raise ValueError(
|
803 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
804 |
+
" only forward one of the two."
|
805 |
+
)
|
806 |
+
elif prompt is None and prompt_embeds is None:
|
807 |
+
raise ValueError(
|
808 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
809 |
+
)
|
810 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
811 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
812 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
813 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
814 |
+
|
815 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
816 |
+
raise ValueError(
|
817 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
818 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
819 |
+
)
|
820 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
821 |
+
raise ValueError(
|
822 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
823 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
824 |
+
)
|
825 |
+
|
826 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
827 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
828 |
+
raise ValueError(
|
829 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
830 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
831 |
+
f" {negative_prompt_embeds.shape}."
|
832 |
+
)
|
833 |
+
if padding_mask_crop is not None:
|
834 |
+
if not isinstance(image, PIL.Image.Image):
|
835 |
+
raise ValueError(
|
836 |
+
f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
|
837 |
+
)
|
838 |
+
if not isinstance(mask_image, PIL.Image.Image):
|
839 |
+
raise ValueError(
|
840 |
+
f"The mask image should be a PIL image when inpainting mask crop, but is of type"
|
841 |
+
f" {type(mask_image)}."
|
842 |
+
)
|
843 |
+
if output_type != "pil":
|
844 |
+
raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")
|
845 |
+
|
846 |
+
def prepare_latents(
|
847 |
+
self,
|
848 |
+
batch_size,
|
849 |
+
num_channels_latents,
|
850 |
+
height,
|
851 |
+
width,
|
852 |
+
dtype,
|
853 |
+
device,
|
854 |
+
generator,
|
855 |
+
latents=None,
|
856 |
+
image=None,
|
857 |
+
timestep=None,
|
858 |
+
is_strength_max=True,
|
859 |
+
add_noise=True,
|
860 |
+
return_noise=False,
|
861 |
+
return_image_latents=False,
|
862 |
+
):
|
863 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
864 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
865 |
+
raise ValueError(
|
866 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
867 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
868 |
+
)
|
869 |
+
|
870 |
+
if (image is None or timestep is None) and not is_strength_max:
|
871 |
+
raise ValueError(
|
872 |
+
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
|
873 |
+
"However, either the image or the noise timestep has not been provided."
|
874 |
+
)
|
875 |
+
|
876 |
+
if image.shape[1] == 4:
|
877 |
+
image_latents = image.to(device=device, dtype=dtype)
|
878 |
+
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
|
879 |
+
elif return_image_latents or (latents is None and not is_strength_max):
|
880 |
+
image = image.to(device=device, dtype=dtype)
|
881 |
+
image_latents = self._encode_vae_image(image=image, generator=generator)
|
882 |
+
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
|
883 |
+
|
884 |
+
if latents is None and add_noise:
|
885 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
886 |
+
# if strength is 1. then initialise the latents to noise, else initial to image + noise
|
887 |
+
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
|
888 |
+
# if pure noise then scale the initial latents by the Scheduler's init sigma
|
889 |
+
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
|
890 |
+
elif add_noise:
|
891 |
+
noise = latents.to(device)
|
892 |
+
latents = noise * self.scheduler.init_noise_sigma
|
893 |
+
else:
|
894 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
895 |
+
latents = image_latents.to(device)
|
896 |
+
|
897 |
+
outputs = (latents,)
|
898 |
+
|
899 |
+
if return_noise:
|
900 |
+
outputs += (noise,)
|
901 |
+
|
902 |
+
if return_image_latents:
|
903 |
+
outputs += (image_latents,)
|
904 |
+
|
905 |
+
return outputs
|
906 |
+
|
907 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
908 |
+
dtype = image.dtype
|
909 |
+
if self.vae.config.force_upcast:
|
910 |
+
image = image.float()
|
911 |
+
self.vae.to(dtype=torch.float32)
|
912 |
+
|
913 |
+
if isinstance(generator, list):
|
914 |
+
image_latents = [
|
915 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
916 |
+
for i in range(image.shape[0])
|
917 |
+
]
|
918 |
+
image_latents = torch.cat(image_latents, dim=0)
|
919 |
+
else:
|
920 |
+
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
921 |
+
|
922 |
+
if self.vae.config.force_upcast:
|
923 |
+
self.vae.to(dtype)
|
924 |
+
|
925 |
+
image_latents = image_latents.to(dtype)
|
926 |
+
image_latents = self.vae.config.scaling_factor * image_latents
|
927 |
+
|
928 |
+
return image_latents
|
929 |
+
|
930 |
+
def prepare_mask_latents(
|
931 |
+
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
932 |
+
):
|
933 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
934 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
935 |
+
# and half precision
|
936 |
+
mask = torch.nn.functional.interpolate(
|
937 |
+
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
938 |
+
)
|
939 |
+
mask = mask.to(device=device, dtype=dtype)
|
940 |
+
|
941 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
942 |
+
if mask.shape[0] < batch_size:
|
943 |
+
if not batch_size % mask.shape[0] == 0:
|
944 |
+
raise ValueError(
|
945 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
946 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
947 |
+
" of masks that you pass is divisible by the total requested batch size."
|
948 |
+
)
|
949 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
950 |
+
|
951 |
+
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
952 |
+
if masked_image is not None and masked_image.shape[1] == 4:
|
953 |
+
masked_image_latents = masked_image
|
954 |
+
else:
|
955 |
+
masked_image_latents = None
|
956 |
+
|
957 |
+
if masked_image is not None:
|
958 |
+
if masked_image_latents is None:
|
959 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
960 |
+
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
|
961 |
+
|
962 |
+
if masked_image_latents.shape[0] < batch_size:
|
963 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
964 |
+
raise ValueError(
|
965 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
966 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
967 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
968 |
+
)
|
969 |
+
masked_image_latents = masked_image_latents.repeat(
|
970 |
+
batch_size // masked_image_latents.shape[0], 1, 1, 1
|
971 |
+
)
|
972 |
+
|
973 |
+
masked_image_latents = (
|
974 |
+
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
975 |
+
)
|
976 |
+
|
977 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
978 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
979 |
+
|
980 |
+
return mask, masked_image_latents
|
981 |
+
|
982 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.get_timesteps
|
983 |
+
def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
|
984 |
+
# get the original timestep using init_timestep
|
985 |
+
if denoising_start is None:
|
986 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
987 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
988 |
+
else:
|
989 |
+
t_start = 0
|
990 |
+
|
991 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
992 |
+
|
993 |
+
# Strength is irrelevant if we directly request a timestep to start at;
|
994 |
+
# that is, strength is determined by the denoising_start instead.
|
995 |
+
if denoising_start is not None:
|
996 |
+
discrete_timestep_cutoff = int(
|
997 |
+
round(
|
998 |
+
self.scheduler.config.num_train_timesteps
|
999 |
+
- (denoising_start * self.scheduler.config.num_train_timesteps)
|
1000 |
+
)
|
1001 |
+
)
|
1002 |
+
|
1003 |
+
num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
|
1004 |
+
if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
|
1005 |
+
# if the scheduler is a 2nd order scheduler we might have to do +1
|
1006 |
+
# because `num_inference_steps` might be even given that every timestep
|
1007 |
+
# (except the highest one) is duplicated. If `num_inference_steps` is even it would
|
1008 |
+
# mean that we cut the timesteps in the middle of the denoising step
|
1009 |
+
# (between 1st and 2nd devirative) which leads to incorrect results. By adding 1
|
1010 |
+
# we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
|
1011 |
+
num_inference_steps = num_inference_steps + 1
|
1012 |
+
|
1013 |
+
# because t_n+1 >= t_n, we slice the timesteps starting from the end
|
1014 |
+
timesteps = timesteps[-num_inference_steps:]
|
1015 |
+
return timesteps, num_inference_steps
|
1016 |
+
|
1017 |
+
return timesteps, num_inference_steps - t_start
|
1018 |
+
|
1019 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids
|
1020 |
+
def _get_add_time_ids(
|
1021 |
+
self,
|
1022 |
+
original_size,
|
1023 |
+
crops_coords_top_left,
|
1024 |
+
target_size,
|
1025 |
+
aesthetic_score,
|
1026 |
+
negative_aesthetic_score,
|
1027 |
+
negative_original_size,
|
1028 |
+
negative_crops_coords_top_left,
|
1029 |
+
negative_target_size,
|
1030 |
+
dtype,
|
1031 |
+
text_encoder_projection_dim=None,
|
1032 |
+
):
|
1033 |
+
if self.config.requires_aesthetics_score:
|
1034 |
+
add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
|
1035 |
+
add_neg_time_ids = list(
|
1036 |
+
negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)
|
1037 |
+
)
|
1038 |
+
else:
|
1039 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
1040 |
+
add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size)
|
1041 |
+
|
1042 |
+
passed_add_embed_dim = (
|
1043 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
|
1044 |
+
)
|
1045 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
1046 |
+
|
1047 |
+
if (
|
1048 |
+
expected_add_embed_dim > passed_add_embed_dim
|
1049 |
+
and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
1050 |
+
):
|
1051 |
+
raise ValueError(
|
1052 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
|
1053 |
+
)
|
1054 |
+
elif (
|
1055 |
+
expected_add_embed_dim < passed_add_embed_dim
|
1056 |
+
and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
1057 |
+
):
|
1058 |
+
raise ValueError(
|
1059 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
|
1060 |
+
)
|
1061 |
+
elif expected_add_embed_dim != passed_add_embed_dim:
|
1062 |
+
raise ValueError(
|
1063 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
1064 |
+
)
|
1065 |
+
|
1066 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
1067 |
+
add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
|
1068 |
+
|
1069 |
+
return add_time_ids, add_neg_time_ids
|
1070 |
+
|
1071 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
1072 |
+
def upcast_vae(self):
|
1073 |
+
dtype = self.vae.dtype
|
1074 |
+
self.vae.to(dtype=torch.float32)
|
1075 |
+
use_torch_2_0_or_xformers = isinstance(
|
1076 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
1077 |
+
(
|
1078 |
+
AttnProcessor2_0,
|
1079 |
+
XFormersAttnProcessor,
|
1080 |
+
LoRAXFormersAttnProcessor,
|
1081 |
+
LoRAAttnProcessor2_0,
|
1082 |
+
),
|
1083 |
+
)
|
1084 |
+
# if xformers or torch_2_0 is used attention block does not need
|
1085 |
+
# to be in float32 which can save lots of memory
|
1086 |
+
if use_torch_2_0_or_xformers:
|
1087 |
+
self.vae.post_quant_conv.to(dtype)
|
1088 |
+
self.vae.decoder.conv_in.to(dtype)
|
1089 |
+
self.vae.decoder.mid_block.to(dtype)
|
1090 |
+
|
1091 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
|
1092 |
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
1093 |
+
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
1094 |
+
|
1095 |
+
The suffixes after the scaling factors represent the stages where they are being applied.
|
1096 |
+
|
1097 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
1098 |
+
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
1099 |
+
|
1100 |
+
Args:
|
1101 |
+
s1 (`float`):
|
1102 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
1103 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
1104 |
+
s2 (`float`):
|
1105 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
1106 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
1107 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
1108 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
1109 |
+
"""
|
1110 |
+
if not hasattr(self, "unet"):
|
1111 |
+
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
1112 |
+
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
1113 |
+
|
1114 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
|
1115 |
+
def disable_freeu(self):
|
1116 |
+
"""Disables the FreeU mechanism if enabled."""
|
1117 |
+
self.unet.disable_freeu()
|
1118 |
+
|
1119 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections
|
1120 |
+
def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
|
1121 |
+
"""
|
1122 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
|
1123 |
+
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
|
1124 |
+
|
1125 |
+
<Tip warning={true}>
|
1126 |
+
|
1127 |
+
This API is 🧪 experimental.
|
1128 |
+
|
1129 |
+
</Tip>
|
1130 |
+
|
1131 |
+
Args:
|
1132 |
+
unet (`bool`, defaults to `True`): To apply fusion on the UNet.
|
1133 |
+
vae (`bool`, defaults to `True`): To apply fusion on the VAE.
|
1134 |
+
"""
|
1135 |
+
self.fusing_unet = False
|
1136 |
+
self.fusing_vae = False
|
1137 |
+
|
1138 |
+
if unet:
|
1139 |
+
self.fusing_unet = True
|
1140 |
+
self.unet.fuse_qkv_projections()
|
1141 |
+
self.unet.set_attn_processor(FusedAttnProcessor2_0())
|
1142 |
+
|
1143 |
+
if vae:
|
1144 |
+
if not isinstance(self.vae, AutoencoderKL):
|
1145 |
+
raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")
|
1146 |
+
|
1147 |
+
self.fusing_vae = True
|
1148 |
+
self.vae.fuse_qkv_projections()
|
1149 |
+
self.vae.set_attn_processor(FusedAttnProcessor2_0())
|
1150 |
+
|
1151 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections
|
1152 |
+
def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
|
1153 |
+
"""Disable QKV projection fusion if enabled.
|
1154 |
+
|
1155 |
+
<Tip warning={true}>
|
1156 |
+
|
1157 |
+
This API is 🧪 experimental.
|
1158 |
+
|
1159 |
+
</Tip>
|
1160 |
+
|
1161 |
+
Args:
|
1162 |
+
unet (`bool`, defaults to `True`): To apply fusion on the UNet.
|
1163 |
+
vae (`bool`, defaults to `True`): To apply fusion on the VAE.
|
1164 |
+
|
1165 |
+
"""
|
1166 |
+
if unet:
|
1167 |
+
if not self.fusing_unet:
|
1168 |
+
logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
|
1169 |
+
else:
|
1170 |
+
self.unet.unfuse_qkv_projections()
|
1171 |
+
self.fusing_unet = False
|
1172 |
+
|
1173 |
+
if vae:
|
1174 |
+
if not self.fusing_vae:
|
1175 |
+
logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
|
1176 |
+
else:
|
1177 |
+
self.vae.unfuse_qkv_projections()
|
1178 |
+
self.fusing_vae = False
|
1179 |
+
|
1180 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
1181 |
+
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
1182 |
+
"""
|
1183 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
1184 |
+
|
1185 |
+
Args:
|
1186 |
+
timesteps (`torch.Tensor`):
|
1187 |
+
generate embedding vectors at these timesteps
|
1188 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
1189 |
+
dimension of the embeddings to generate
|
1190 |
+
dtype:
|
1191 |
+
data type of the generated embeddings
|
1192 |
+
|
1193 |
+
Returns:
|
1194 |
+
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
1195 |
+
"""
|
1196 |
+
assert len(w.shape) == 1
|
1197 |
+
w = w * 1000.0
|
1198 |
+
|
1199 |
+
half_dim = embedding_dim // 2
|
1200 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
1201 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
1202 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
1203 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
1204 |
+
if embedding_dim % 2 == 1: # zero pad
|
1205 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
1206 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
1207 |
+
return emb
|
1208 |
+
|
1209 |
+
@property
|
1210 |
+
def guidance_scale(self):
|
1211 |
+
return self._guidance_scale
|
1212 |
+
|
1213 |
+
@property
|
1214 |
+
def guidance_rescale(self):
|
1215 |
+
return self._guidance_rescale
|
1216 |
+
|
1217 |
+
@property
|
1218 |
+
def clip_skip(self):
|
1219 |
+
return self._clip_skip
|
1220 |
+
|
1221 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1222 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1223 |
+
# corresponds to doing no classifier free guidance.
|
1224 |
+
@property
|
1225 |
+
def do_classifier_free_guidance(self):
|
1226 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
1227 |
+
|
1228 |
+
@property
|
1229 |
+
def cross_attention_kwargs(self):
|
1230 |
+
return self._cross_attention_kwargs
|
1231 |
+
|
1232 |
+
@property
|
1233 |
+
def denoising_end(self):
|
1234 |
+
return self._denoising_end
|
1235 |
+
|
1236 |
+
@property
|
1237 |
+
def denoising_start(self):
|
1238 |
+
return self._denoising_start
|
1239 |
+
|
1240 |
+
@property
|
1241 |
+
def num_timesteps(self):
|
1242 |
+
return self._num_timesteps
|
1243 |
+
|
1244 |
+
@property
|
1245 |
+
def interrupt(self):
|
1246 |
+
return self._interrupt
|
1247 |
+
|
1248 |
+
@torch.no_grad()
|
1249 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
1250 |
+
def __call__(
|
1251 |
+
self,
|
1252 |
+
prompt: Union[str, List[str]] = None,
|
1253 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
1254 |
+
image: PipelineImageInput = None,
|
1255 |
+
mask_image: PipelineImageInput = None,
|
1256 |
+
masked_image_latents: torch.FloatTensor = None,
|
1257 |
+
height: Optional[int] = None,
|
1258 |
+
width: Optional[int] = None,
|
1259 |
+
padding_mask_crop: Optional[int] = None,
|
1260 |
+
strength: float = 0.9999,
|
1261 |
+
num_inference_steps: int = 50,
|
1262 |
+
timesteps: List[int] = None,
|
1263 |
+
denoising_start: Optional[float] = None,
|
1264 |
+
denoising_end: Optional[float] = None,
|
1265 |
+
guidance_scale: float = 7.5,
|
1266 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
1267 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
1268 |
+
num_images_per_prompt: Optional[int] = 1,
|
1269 |
+
eta: float = 0.0,
|
1270 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1271 |
+
latents: Optional[torch.FloatTensor] = None,
|
1272 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
1273 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1274 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1275 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1276 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
1277 |
+
output_type: Optional[str] = "pil",
|
1278 |
+
cloth =None,
|
1279 |
+
pose_img = None,
|
1280 |
+
text_embeds_cloth=None,
|
1281 |
+
return_dict: bool = True,
|
1282 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1283 |
+
guidance_rescale: float = 0.0,
|
1284 |
+
original_size: Tuple[int, int] = None,
|
1285 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
1286 |
+
target_size: Tuple[int, int] = None,
|
1287 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
1288 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
1289 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
1290 |
+
aesthetic_score: float = 6.0,
|
1291 |
+
negative_aesthetic_score: float = 2.5,
|
1292 |
+
clip_skip: Optional[int] = None,
|
1293 |
+
pooled_prompt_embeds_c=None,
|
1294 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
1295 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1296 |
+
**kwargs,
|
1297 |
+
):
|
1298 |
+
r"""
|
1299 |
+
Function invoked when calling the pipeline for generation.
|
1300 |
+
|
1301 |
+
Args:
|
1302 |
+
prompt (`str` or `List[str]`, *optional*):
|
1303 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
1304 |
+
instead.
|
1305 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
1306 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
1307 |
+
used in both text-encoders
|
1308 |
+
image (`PIL.Image.Image`):
|
1309 |
+
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
|
1310 |
+
be masked out with `mask_image` and repainted according to `prompt`.
|
1311 |
+
mask_image (`PIL.Image.Image`):
|
1312 |
+
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
1313 |
+
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
|
1314 |
+
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
|
1315 |
+
instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
1316 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
1317 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
1318 |
+
Anything below 512 pixels won't work well for
|
1319 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1320 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1321 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
1322 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
1323 |
+
Anything below 512 pixels won't work well for
|
1324 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1325 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1326 |
+
padding_mask_crop (`int`, *optional*, defaults to `None`):
|
1327 |
+
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to image and mask_image. If
|
1328 |
+
`padding_mask_crop` is not `None`, it will first find a rectangular region with the same aspect ration of the image and
|
1329 |
+
contains all masked area, and then expand that area based on `padding_mask_crop`. The image and mask_image will then be cropped based on
|
1330 |
+
the expanded area before resizing to the original image size for inpainting. This is useful when the masked area is small while the image is large
|
1331 |
+
and contain information inreleant for inpainging, such as background.
|
1332 |
+
strength (`float`, *optional*, defaults to 0.9999):
|
1333 |
+
Conceptually, indicates how much to transform the masked portion of the reference `image`. Must be
|
1334 |
+
between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the
|
1335 |
+
`strength`. The number of denoising steps depends on the amount of noise initially added. When
|
1336 |
+
`strength` is 1, added noise will be maximum and the denoising process will run for the full number of
|
1337 |
+
iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores the masked
|
1338 |
+
portion of the reference `image`. Note that in the case of `denoising_start` being declared as an
|
1339 |
+
integer, the value of `strength` will be ignored.
|
1340 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1341 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1342 |
+
expense of slower inference.
|
1343 |
+
timesteps (`List[int]`, *optional*):
|
1344 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1345 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1346 |
+
passed will be used. Must be in descending order.
|
1347 |
+
denoising_start (`float`, *optional*):
|
1348 |
+
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
|
1349 |
+
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
|
1350 |
+
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
|
1351 |
+
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
|
1352 |
+
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image
|
1353 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
1354 |
+
denoising_end (`float`, *optional*):
|
1355 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
1356 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
1357 |
+
still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be
|
1358 |
+
denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the
|
1359 |
+
final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline
|
1360 |
+
forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
1361 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
1362 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1363 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
1364 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1365 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
1366 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1367 |
+
usually at the expense of lower image quality.
|
1368 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1369 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
1370 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
1371 |
+
less than `1`).
|
1372 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
1373 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
1374 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
1375 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
1376 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
1377 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
1378 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1379 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1380 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
1381 |
+
argument.
|
1382 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1383 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
1384 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
1385 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1386 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1387 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
1388 |
+
input argument.
|
1389 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1390 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1391 |
+
The number of images to generate per prompt.
|
1392 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1393 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
1394 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1395 |
+
generator (`torch.Generator`, *optional*):
|
1396 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
1397 |
+
to make generation deterministic.
|
1398 |
+
latents (`torch.FloatTensor`, *optional*):
|
1399 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
1400 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1401 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
1402 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1403 |
+
The output format of the generate image. Choose between
|
1404 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
1405 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1406 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1407 |
+
plain tuple.
|
1408 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1409 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1410 |
+
`self.processor` in
|
1411 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1412 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1413 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
1414 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
1415 |
+
explained in section 2.2 of
|
1416 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1417 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1418 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
1419 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
1420 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1421 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1422 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1423 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
1424 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
1425 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1426 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1427 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
1428 |
+
micro-conditioning as explained in section 2.2 of
|
1429 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1430 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1431 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1432 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
1433 |
+
micro-conditioning as explained in section 2.2 of
|
1434 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1435 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1436 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1437 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
1438 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1439 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1440 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1441 |
+
aesthetic_score (`float`, *optional*, defaults to 6.0):
|
1442 |
+
Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
|
1443 |
+
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1444 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1445 |
+
negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
|
1446 |
+
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1447 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
|
1448 |
+
simulate an aesthetic score of the generated image by influencing the negative text condition.
|
1449 |
+
clip_skip (`int`, *optional*):
|
1450 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1451 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1452 |
+
callback_on_step_end (`Callable`, *optional*):
|
1453 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
1454 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
1455 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
1456 |
+
`callback_on_step_end_tensor_inputs`.
|
1457 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1458 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1459 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1460 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1461 |
+
|
1462 |
+
Examples:
|
1463 |
+
|
1464 |
+
Returns:
|
1465 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
|
1466 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
1467 |
+
`tuple. `tuple. When returning a tuple, the first element is a list with the generated images.
|
1468 |
+
"""
|
1469 |
+
|
1470 |
+
callback = kwargs.pop("callback", None)
|
1471 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
1472 |
+
|
1473 |
+
if callback is not None:
|
1474 |
+
deprecate(
|
1475 |
+
"callback",
|
1476 |
+
"1.0.0",
|
1477 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1478 |
+
)
|
1479 |
+
if callback_steps is not None:
|
1480 |
+
deprecate(
|
1481 |
+
"callback_steps",
|
1482 |
+
"1.0.0",
|
1483 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1484 |
+
)
|
1485 |
+
|
1486 |
+
# 0. Default height and width to unet
|
1487 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
1488 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
1489 |
+
|
1490 |
+
# 1. Check inputs
|
1491 |
+
self.check_inputs(
|
1492 |
+
prompt,
|
1493 |
+
prompt_2,
|
1494 |
+
image,
|
1495 |
+
mask_image,
|
1496 |
+
height,
|
1497 |
+
width,
|
1498 |
+
strength,
|
1499 |
+
callback_steps,
|
1500 |
+
output_type,
|
1501 |
+
negative_prompt,
|
1502 |
+
negative_prompt_2,
|
1503 |
+
prompt_embeds,
|
1504 |
+
negative_prompt_embeds,
|
1505 |
+
callback_on_step_end_tensor_inputs,
|
1506 |
+
padding_mask_crop,
|
1507 |
+
)
|
1508 |
+
|
1509 |
+
self._guidance_scale = guidance_scale
|
1510 |
+
self._guidance_rescale = guidance_rescale
|
1511 |
+
self._clip_skip = clip_skip
|
1512 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1513 |
+
self._denoising_end = denoising_end
|
1514 |
+
self._denoising_start = denoising_start
|
1515 |
+
self._interrupt = False
|
1516 |
+
|
1517 |
+
# 2. Define call parameters
|
1518 |
+
if prompt is not None and isinstance(prompt, str):
|
1519 |
+
batch_size = 1
|
1520 |
+
elif prompt is not None and isinstance(prompt, list):
|
1521 |
+
batch_size = len(prompt)
|
1522 |
+
else:
|
1523 |
+
batch_size = prompt_embeds.shape[0]
|
1524 |
+
|
1525 |
+
device = self._execution_device
|
1526 |
+
|
1527 |
+
# 3. Encode input prompt
|
1528 |
+
text_encoder_lora_scale = (
|
1529 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1530 |
+
)
|
1531 |
+
|
1532 |
+
(
|
1533 |
+
prompt_embeds,
|
1534 |
+
negative_prompt_embeds,
|
1535 |
+
pooled_prompt_embeds,
|
1536 |
+
negative_pooled_prompt_embeds,
|
1537 |
+
) = self.encode_prompt(
|
1538 |
+
prompt=prompt,
|
1539 |
+
prompt_2=prompt_2,
|
1540 |
+
device=device,
|
1541 |
+
num_images_per_prompt=num_images_per_prompt,
|
1542 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1543 |
+
negative_prompt=negative_prompt,
|
1544 |
+
negative_prompt_2=negative_prompt_2,
|
1545 |
+
prompt_embeds=prompt_embeds,
|
1546 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1547 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1548 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1549 |
+
lora_scale=text_encoder_lora_scale,
|
1550 |
+
clip_skip=self.clip_skip,
|
1551 |
+
)
|
1552 |
+
|
1553 |
+
# 4. set timesteps
|
1554 |
+
def denoising_value_valid(dnv):
|
1555 |
+
return isinstance(self.denoising_end, float) and 0 < dnv < 1
|
1556 |
+
|
1557 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
1558 |
+
timesteps, num_inference_steps = self.get_timesteps(
|
1559 |
+
num_inference_steps,
|
1560 |
+
strength,
|
1561 |
+
device,
|
1562 |
+
denoising_start=self.denoising_start if denoising_value_valid else None,
|
1563 |
+
)
|
1564 |
+
# check that number of inference steps is not < 1 - as this doesn't make sense
|
1565 |
+
if num_inference_steps < 1:
|
1566 |
+
raise ValueError(
|
1567 |
+
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
|
1568 |
+
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
|
1569 |
+
)
|
1570 |
+
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
|
1571 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1572 |
+
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
1573 |
+
is_strength_max = strength == 1.0
|
1574 |
+
|
1575 |
+
# 5. Preprocess mask and image
|
1576 |
+
if padding_mask_crop is not None:
|
1577 |
+
crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
|
1578 |
+
resize_mode = "fill"
|
1579 |
+
else:
|
1580 |
+
crops_coords = None
|
1581 |
+
resize_mode = "default"
|
1582 |
+
|
1583 |
+
original_image = image
|
1584 |
+
init_image = self.image_processor.preprocess(
|
1585 |
+
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
|
1586 |
+
)
|
1587 |
+
init_image = init_image.to(dtype=torch.float32)
|
1588 |
+
|
1589 |
+
mask = self.mask_processor.preprocess(
|
1590 |
+
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
|
1591 |
+
)
|
1592 |
+
if masked_image_latents is not None:
|
1593 |
+
masked_image = masked_image_latents
|
1594 |
+
elif init_image.shape[1] == 4:
|
1595 |
+
# if images are in latent space, we can't mask it
|
1596 |
+
masked_image = None
|
1597 |
+
else:
|
1598 |
+
masked_image = init_image * (mask < 0.5)
|
1599 |
+
|
1600 |
+
# 6. Prepare latent variables
|
1601 |
+
num_channels_latents = self.vae.config.latent_channels
|
1602 |
+
num_channels_unet = self.unet.config.in_channels
|
1603 |
+
return_image_latents = num_channels_unet == 4
|
1604 |
+
|
1605 |
+
add_noise = True if self.denoising_start is None else False
|
1606 |
+
latents_outputs = self.prepare_latents(
|
1607 |
+
batch_size * num_images_per_prompt,
|
1608 |
+
num_channels_latents,
|
1609 |
+
height,
|
1610 |
+
width,
|
1611 |
+
prompt_embeds.dtype,
|
1612 |
+
device,
|
1613 |
+
generator,
|
1614 |
+
latents,
|
1615 |
+
image=init_image,
|
1616 |
+
timestep=latent_timestep,
|
1617 |
+
is_strength_max=is_strength_max,
|
1618 |
+
add_noise=add_noise,
|
1619 |
+
return_noise=True,
|
1620 |
+
return_image_latents=return_image_latents,
|
1621 |
+
)
|
1622 |
+
|
1623 |
+
if return_image_latents:
|
1624 |
+
latents, noise, image_latents = latents_outputs
|
1625 |
+
else:
|
1626 |
+
latents, noise = latents_outputs
|
1627 |
+
|
1628 |
+
# 7. Prepare mask latent variables
|
1629 |
+
mask, masked_image_latents = self.prepare_mask_latents(
|
1630 |
+
mask,
|
1631 |
+
masked_image,
|
1632 |
+
batch_size * num_images_per_prompt,
|
1633 |
+
height,
|
1634 |
+
width,
|
1635 |
+
prompt_embeds.dtype,
|
1636 |
+
device,
|
1637 |
+
generator,
|
1638 |
+
self.do_classifier_free_guidance,
|
1639 |
+
)
|
1640 |
+
pose_img = pose_img.to(device=device, dtype=prompt_embeds.dtype)
|
1641 |
+
|
1642 |
+
pose_img = self.vae.encode(pose_img).latent_dist.sample()
|
1643 |
+
pose_img = pose_img * self.vae.config.scaling_factor
|
1644 |
+
|
1645 |
+
# pose_img = self._encode_vae_image(pose_img, generator=generator)
|
1646 |
+
|
1647 |
+
pose_img = (
|
1648 |
+
torch.cat([pose_img] * 2) if self.do_classifier_free_guidance else pose_img
|
1649 |
+
)
|
1650 |
+
cloth = self._encode_vae_image(cloth, generator=generator)
|
1651 |
+
|
1652 |
+
# # 8. Check that sizes of mask, masked image and latents match
|
1653 |
+
# if num_channels_unet == 9:
|
1654 |
+
# # default case for runwayml/stable-diffusion-inpainting
|
1655 |
+
# num_channels_mask = mask.shape[1]
|
1656 |
+
# num_channels_masked_image = masked_image_latents.shape[1]
|
1657 |
+
# if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
|
1658 |
+
# raise ValueError(
|
1659 |
+
# f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
|
1660 |
+
# f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
1661 |
+
# f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
|
1662 |
+
# f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
|
1663 |
+
# " `pipeline.unet` or your `mask_image` or `image` input."
|
1664 |
+
# )
|
1665 |
+
# elif num_channels_unet != 4:
|
1666 |
+
# raise ValueError(
|
1667 |
+
# f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
|
1668 |
+
# )
|
1669 |
+
# 8.1 Prepare extra step kwargs.
|
1670 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1671 |
+
|
1672 |
+
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1673 |
+
height, width = latents.shape[-2:]
|
1674 |
+
height = height * self.vae_scale_factor
|
1675 |
+
width = width * self.vae_scale_factor
|
1676 |
+
|
1677 |
+
original_size = original_size or (height, width)
|
1678 |
+
target_size = target_size or (height, width)
|
1679 |
+
|
1680 |
+
# 10. Prepare added time ids & embeddings
|
1681 |
+
if negative_original_size is None:
|
1682 |
+
negative_original_size = original_size
|
1683 |
+
if negative_target_size is None:
|
1684 |
+
negative_target_size = target_size
|
1685 |
+
|
1686 |
+
add_text_embeds = pooled_prompt_embeds
|
1687 |
+
if self.text_encoder_2 is None:
|
1688 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
1689 |
+
else:
|
1690 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
1691 |
+
|
1692 |
+
add_time_ids, add_neg_time_ids = self._get_add_time_ids(
|
1693 |
+
original_size,
|
1694 |
+
crops_coords_top_left,
|
1695 |
+
target_size,
|
1696 |
+
aesthetic_score,
|
1697 |
+
negative_aesthetic_score,
|
1698 |
+
negative_original_size,
|
1699 |
+
negative_crops_coords_top_left,
|
1700 |
+
negative_target_size,
|
1701 |
+
dtype=prompt_embeds.dtype,
|
1702 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1703 |
+
)
|
1704 |
+
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
1705 |
+
|
1706 |
+
if self.do_classifier_free_guidance:
|
1707 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1708 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1709 |
+
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
1710 |
+
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
|
1711 |
+
|
1712 |
+
prompt_embeds = prompt_embeds.to(device)
|
1713 |
+
add_text_embeds = add_text_embeds.to(device)
|
1714 |
+
add_time_ids = add_time_ids.to(device)
|
1715 |
+
|
1716 |
+
if ip_adapter_image is not None:
|
1717 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1718 |
+
ip_adapter_image, device, batch_size * num_images_per_prompt
|
1719 |
+
)
|
1720 |
+
|
1721 |
+
#project outside for loop
|
1722 |
+
image_embeds = self.unet.encoder_hid_proj(image_embeds).to(prompt_embeds.dtype)
|
1723 |
+
|
1724 |
+
|
1725 |
+
# 11. Denoising loop
|
1726 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1727 |
+
|
1728 |
+
if (
|
1729 |
+
self.denoising_end is not None
|
1730 |
+
and self.denoising_start is not None
|
1731 |
+
and denoising_value_valid(self.denoising_end)
|
1732 |
+
and denoising_value_valid(self.denoising_start)
|
1733 |
+
and self.denoising_start >= self.denoising_end
|
1734 |
+
):
|
1735 |
+
raise ValueError(
|
1736 |
+
f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
|
1737 |
+
+ f" {self.denoising_end} when using type float."
|
1738 |
+
)
|
1739 |
+
elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
|
1740 |
+
discrete_timestep_cutoff = int(
|
1741 |
+
round(
|
1742 |
+
self.scheduler.config.num_train_timesteps
|
1743 |
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
1744 |
+
)
|
1745 |
+
)
|
1746 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
1747 |
+
timesteps = timesteps[:num_inference_steps]
|
1748 |
+
|
1749 |
+
# 11.1 Optionally get Guidance Scale Embedding
|
1750 |
+
timestep_cond = None
|
1751 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
1752 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
1753 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
1754 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1755 |
+
).to(device=device, dtype=latents.dtype)
|
1756 |
+
|
1757 |
+
|
1758 |
+
|
1759 |
+
self._num_timesteps = len(timesteps)
|
1760 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1761 |
+
for i, t in enumerate(timesteps):
|
1762 |
+
if self.interrupt:
|
1763 |
+
continue
|
1764 |
+
# expand the latents if we are doing classifier free guidance
|
1765 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1766 |
+
|
1767 |
+
# concat latents, mask, masked_image_latents in the channel dimension
|
1768 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1769 |
+
|
1770 |
+
|
1771 |
+
# bsz = mask.shape[0]
|
1772 |
+
if num_channels_unet == 13:
|
1773 |
+
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents,pose_img], dim=1)
|
1774 |
+
|
1775 |
+
# if num_channels_unet == 9:
|
1776 |
+
# latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
|
1777 |
+
|
1778 |
+
# predict the noise residual
|
1779 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1780 |
+
if ip_adapter_image is not None:
|
1781 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
1782 |
+
# down,reference_features = self.UNet_Encoder(cloth,t, text_embeds_cloth,added_cond_kwargs= {"text_embeds": pooled_prompt_embeds_c, "time_ids": add_time_ids},return_dict=False)
|
1783 |
+
down,reference_features = self.unet_encoder(cloth,t, text_embeds_cloth,return_dict=False)
|
1784 |
+
# print(type(reference_features))
|
1785 |
+
# print(reference_features)
|
1786 |
+
reference_features = list(reference_features)
|
1787 |
+
# print(len(reference_features))
|
1788 |
+
# for elem in reference_features:
|
1789 |
+
# print(elem.shape)
|
1790 |
+
# exit(1)
|
1791 |
+
if self.do_classifier_free_guidance:
|
1792 |
+
reference_features = [torch.cat([torch.zeros_like(d), d]) for d in reference_features]
|
1793 |
+
|
1794 |
+
|
1795 |
+
noise_pred = self.unet(
|
1796 |
+
latent_model_input,
|
1797 |
+
t,
|
1798 |
+
encoder_hidden_states=prompt_embeds,
|
1799 |
+
timestep_cond=timestep_cond,
|
1800 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1801 |
+
added_cond_kwargs=added_cond_kwargs,
|
1802 |
+
return_dict=False,
|
1803 |
+
garment_features=reference_features,
|
1804 |
+
)[0]
|
1805 |
+
# noise_pred = self.unet(latent_model_input, t,
|
1806 |
+
# prompt_embeds,timestep_cond=timestep_cond,cross_attention_kwargs=self.cross_attention_kwargs,added_cond_kwargs=added_cond_kwargs,down_block_additional_attn=down ).sample
|
1807 |
+
|
1808 |
+
|
1809 |
+
# perform guidance
|
1810 |
+
if self.do_classifier_free_guidance:
|
1811 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1812 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1813 |
+
|
1814 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1815 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1816 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1817 |
+
|
1818 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1819 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1820 |
+
|
1821 |
+
if num_channels_unet == 4:
|
1822 |
+
init_latents_proper = image_latents
|
1823 |
+
if self.do_classifier_free_guidance:
|
1824 |
+
init_mask, _ = mask.chunk(2)
|
1825 |
+
else:
|
1826 |
+
init_mask = mask
|
1827 |
+
|
1828 |
+
if i < len(timesteps) - 1:
|
1829 |
+
noise_timestep = timesteps[i + 1]
|
1830 |
+
init_latents_proper = self.scheduler.add_noise(
|
1831 |
+
init_latents_proper, noise, torch.tensor([noise_timestep])
|
1832 |
+
)
|
1833 |
+
|
1834 |
+
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
1835 |
+
|
1836 |
+
if callback_on_step_end is not None:
|
1837 |
+
callback_kwargs = {}
|
1838 |
+
for k in callback_on_step_end_tensor_inputs:
|
1839 |
+
callback_kwargs[k] = locals()[k]
|
1840 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1841 |
+
|
1842 |
+
latents = callback_outputs.pop("latents", latents)
|
1843 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1844 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1845 |
+
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
1846 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
1847 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
1848 |
+
)
|
1849 |
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
1850 |
+
add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
|
1851 |
+
mask = callback_outputs.pop("mask", mask)
|
1852 |
+
masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
|
1853 |
+
|
1854 |
+
# call the callback, if provided
|
1855 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1856 |
+
progress_bar.update()
|
1857 |
+
if callback is not None and i % callback_steps == 0:
|
1858 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1859 |
+
callback(step_idx, t, latents)
|
1860 |
+
|
1861 |
+
if XLA_AVAILABLE:
|
1862 |
+
xm.mark_step()
|
1863 |
+
|
1864 |
+
if not output_type == "latent":
|
1865 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1866 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1867 |
+
|
1868 |
+
if needs_upcasting:
|
1869 |
+
self.upcast_vae()
|
1870 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1871 |
+
|
1872 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1873 |
+
|
1874 |
+
# cast back to fp16 if needed
|
1875 |
+
if needs_upcasting:
|
1876 |
+
self.vae.to(dtype=torch.float16)
|
1877 |
+
# else:
|
1878 |
+
# return StableDiffusionXLPipelineOutput(images=latents)
|
1879 |
+
|
1880 |
+
|
1881 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1882 |
+
|
1883 |
+
if padding_mask_crop is not None:
|
1884 |
+
image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
|
1885 |
+
|
1886 |
+
# Offload all models
|
1887 |
+
self.maybe_free_model_hooks()
|
1888 |
+
|
1889 |
+
# if not return_dict:
|
1890 |
+
return (image,)
|
1891 |
+
|
1892 |
+
# return StableDiffusionXLPipelineOutput(images=image)
|
src/unet_block_hacked_garmnet.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/unet_block_hacked_tryon.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/unet_hacked_garmnet.py
ADDED
@@ -0,0 +1,1284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
23 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
24 |
+
from diffusers.models.activations import get_activation
|
25 |
+
from diffusers.models.attention_processor import (
|
26 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
27 |
+
CROSS_ATTENTION_PROCESSORS,
|
28 |
+
Attention,
|
29 |
+
AttentionProcessor,
|
30 |
+
AttnAddedKVProcessor,
|
31 |
+
AttnProcessor,
|
32 |
+
)
|
33 |
+
from einops import rearrange
|
34 |
+
|
35 |
+
from diffusers.models.embeddings import (
|
36 |
+
GaussianFourierProjection,
|
37 |
+
ImageHintTimeEmbedding,
|
38 |
+
ImageProjection,
|
39 |
+
ImageTimeEmbedding,
|
40 |
+
PositionNet,
|
41 |
+
TextImageProjection,
|
42 |
+
TextImageTimeEmbedding,
|
43 |
+
TextTimeEmbedding,
|
44 |
+
TimestepEmbedding,
|
45 |
+
Timesteps,
|
46 |
+
)
|
47 |
+
from diffusers.models.modeling_utils import ModelMixin
|
48 |
+
from src.unet_block_hacked_garmnet import (
|
49 |
+
UNetMidBlock2D,
|
50 |
+
UNetMidBlock2DCrossAttn,
|
51 |
+
UNetMidBlock2DSimpleCrossAttn,
|
52 |
+
get_down_block,
|
53 |
+
get_up_block,
|
54 |
+
)
|
55 |
+
from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
|
56 |
+
from diffusers.models.transformer_2d import Transformer2DModel
|
57 |
+
|
58 |
+
|
59 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
60 |
+
|
61 |
+
|
62 |
+
def zero_module(module):
|
63 |
+
for p in module.parameters():
|
64 |
+
nn.init.zeros_(p)
|
65 |
+
return module
|
66 |
+
|
67 |
+
@dataclass
|
68 |
+
class UNet2DConditionOutput(BaseOutput):
|
69 |
+
"""
|
70 |
+
The output of [`UNet2DConditionModel`].
|
71 |
+
|
72 |
+
Args:
|
73 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
74 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
75 |
+
"""
|
76 |
+
|
77 |
+
sample: torch.FloatTensor = None
|
78 |
+
|
79 |
+
|
80 |
+
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
81 |
+
r"""
|
82 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
83 |
+
shaped output.
|
84 |
+
|
85 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
86 |
+
for all models (such as downloading or saving).
|
87 |
+
|
88 |
+
Parameters:
|
89 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
90 |
+
Height and width of input/output sample.
|
91 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
92 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
93 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
94 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
95 |
+
Whether to flip the sin to cos in the time embedding.
|
96 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
97 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
98 |
+
The tuple of downsample blocks to use.
|
99 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
100 |
+
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
101 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
102 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
103 |
+
The tuple of upsample blocks to use.
|
104 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
105 |
+
Whether to include self-attention in the basic transformer blocks, see
|
106 |
+
[`~models.attention.BasicTransformerBlock`].
|
107 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
108 |
+
The tuple of output channels for each block.
|
109 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
110 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
111 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
112 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
113 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
114 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
115 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
116 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
117 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
118 |
+
The dimension of the cross attention features.
|
119 |
+
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
120 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
121 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
122 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
123 |
+
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
124 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
125 |
+
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
126 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
127 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
128 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
129 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
130 |
+
dimension to `cross_attention_dim`.
|
131 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
132 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
133 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
134 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
135 |
+
num_attention_heads (`int`, *optional*):
|
136 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
137 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
138 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
139 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
140 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
141 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
142 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
143 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
144 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
145 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
146 |
+
Dimension for the timestep embeddings.
|
147 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
148 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
149 |
+
class conditioning with `class_embed_type` equal to `None`.
|
150 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
151 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
152 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
153 |
+
An optional override for the dimension of the projected time embedding.
|
154 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
155 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
156 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
157 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
158 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
159 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
160 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
161 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
|
162 |
+
*optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
|
163 |
+
*optional*): The dimension of the `class_labels` input when
|
164 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
165 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
166 |
+
embeddings with the class embeddings.
|
167 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
168 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
169 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
170 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
171 |
+
otherwise.
|
172 |
+
"""
|
173 |
+
|
174 |
+
_supports_gradient_checkpointing = True
|
175 |
+
|
176 |
+
@register_to_config
|
177 |
+
def __init__(
|
178 |
+
self,
|
179 |
+
sample_size: Optional[int] = None,
|
180 |
+
in_channels: int = 4,
|
181 |
+
out_channels: int = 4,
|
182 |
+
center_input_sample: bool = False,
|
183 |
+
flip_sin_to_cos: bool = True,
|
184 |
+
freq_shift: int = 0,
|
185 |
+
down_block_types: Tuple[str] = (
|
186 |
+
"CrossAttnDownBlock2D",
|
187 |
+
"CrossAttnDownBlock2D",
|
188 |
+
"CrossAttnDownBlock2D",
|
189 |
+
"DownBlock2D",
|
190 |
+
),
|
191 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
192 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
193 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
194 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
195 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
196 |
+
downsample_padding: int = 1,
|
197 |
+
mid_block_scale_factor: float = 1,
|
198 |
+
dropout: float = 0.0,
|
199 |
+
act_fn: str = "silu",
|
200 |
+
norm_num_groups: Optional[int] = 32,
|
201 |
+
norm_eps: float = 1e-5,
|
202 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
203 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
204 |
+
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
205 |
+
encoder_hid_dim: Optional[int] = None,
|
206 |
+
encoder_hid_dim_type: Optional[str] = None,
|
207 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
208 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
209 |
+
dual_cross_attention: bool = False,
|
210 |
+
use_linear_projection: bool = False,
|
211 |
+
class_embed_type: Optional[str] = None,
|
212 |
+
addition_embed_type: Optional[str] = None,
|
213 |
+
addition_time_embed_dim: Optional[int] = None,
|
214 |
+
num_class_embeds: Optional[int] = None,
|
215 |
+
upcast_attention: bool = False,
|
216 |
+
resnet_time_scale_shift: str = "default",
|
217 |
+
resnet_skip_time_act: bool = False,
|
218 |
+
resnet_out_scale_factor: int = 1.0,
|
219 |
+
time_embedding_type: str = "positional",
|
220 |
+
time_embedding_dim: Optional[int] = None,
|
221 |
+
time_embedding_act_fn: Optional[str] = None,
|
222 |
+
timestep_post_act: Optional[str] = None,
|
223 |
+
time_cond_proj_dim: Optional[int] = None,
|
224 |
+
conv_in_kernel: int = 3,
|
225 |
+
conv_out_kernel: int = 3,
|
226 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
227 |
+
attention_type: str = "default",
|
228 |
+
class_embeddings_concat: bool = False,
|
229 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
230 |
+
cross_attention_norm: Optional[str] = None,
|
231 |
+
addition_embed_type_num_heads=64,
|
232 |
+
):
|
233 |
+
super().__init__()
|
234 |
+
|
235 |
+
self.sample_size = sample_size
|
236 |
+
|
237 |
+
if num_attention_heads is not None:
|
238 |
+
raise ValueError(
|
239 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
240 |
+
)
|
241 |
+
|
242 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
243 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
244 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
245 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
246 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
247 |
+
# which is why we correct for the naming here.
|
248 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
249 |
+
|
250 |
+
# Check inputs
|
251 |
+
if len(down_block_types) != len(up_block_types):
|
252 |
+
raise ValueError(
|
253 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
254 |
+
)
|
255 |
+
|
256 |
+
if len(block_out_channels) != len(down_block_types):
|
257 |
+
raise ValueError(
|
258 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
259 |
+
)
|
260 |
+
|
261 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
262 |
+
raise ValueError(
|
263 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
264 |
+
)
|
265 |
+
|
266 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
267 |
+
raise ValueError(
|
268 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
269 |
+
)
|
270 |
+
|
271 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
272 |
+
raise ValueError(
|
273 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
274 |
+
)
|
275 |
+
|
276 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
277 |
+
raise ValueError(
|
278 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
279 |
+
)
|
280 |
+
|
281 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
282 |
+
raise ValueError(
|
283 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
284 |
+
)
|
285 |
+
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
|
286 |
+
for layer_number_per_block in transformer_layers_per_block:
|
287 |
+
if isinstance(layer_number_per_block, list):
|
288 |
+
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
|
289 |
+
|
290 |
+
# input
|
291 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
292 |
+
self.conv_in = nn.Conv2d(
|
293 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
294 |
+
)
|
295 |
+
|
296 |
+
# time
|
297 |
+
if time_embedding_type == "fourier":
|
298 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
299 |
+
if time_embed_dim % 2 != 0:
|
300 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
301 |
+
self.time_proj = GaussianFourierProjection(
|
302 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
303 |
+
)
|
304 |
+
timestep_input_dim = time_embed_dim
|
305 |
+
elif time_embedding_type == "positional":
|
306 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
307 |
+
|
308 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
309 |
+
timestep_input_dim = block_out_channels[0]
|
310 |
+
else:
|
311 |
+
raise ValueError(
|
312 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
313 |
+
)
|
314 |
+
|
315 |
+
self.time_embedding = TimestepEmbedding(
|
316 |
+
timestep_input_dim,
|
317 |
+
time_embed_dim,
|
318 |
+
act_fn=act_fn,
|
319 |
+
post_act_fn=timestep_post_act,
|
320 |
+
cond_proj_dim=time_cond_proj_dim,
|
321 |
+
)
|
322 |
+
|
323 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
324 |
+
encoder_hid_dim_type = "text_proj"
|
325 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
326 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
327 |
+
|
328 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
329 |
+
raise ValueError(
|
330 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
331 |
+
)
|
332 |
+
|
333 |
+
if encoder_hid_dim_type == "text_proj":
|
334 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
335 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
336 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
337 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
338 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
339 |
+
self.encoder_hid_proj = TextImageProjection(
|
340 |
+
text_embed_dim=encoder_hid_dim,
|
341 |
+
image_embed_dim=cross_attention_dim,
|
342 |
+
cross_attention_dim=cross_attention_dim,
|
343 |
+
)
|
344 |
+
elif encoder_hid_dim_type == "image_proj":
|
345 |
+
# Kandinsky 2.2
|
346 |
+
self.encoder_hid_proj = ImageProjection(
|
347 |
+
image_embed_dim=encoder_hid_dim,
|
348 |
+
cross_attention_dim=cross_attention_dim,
|
349 |
+
)
|
350 |
+
elif encoder_hid_dim_type is not None:
|
351 |
+
raise ValueError(
|
352 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
353 |
+
)
|
354 |
+
else:
|
355 |
+
self.encoder_hid_proj = None
|
356 |
+
|
357 |
+
# class embedding
|
358 |
+
if class_embed_type is None and num_class_embeds is not None:
|
359 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
360 |
+
elif class_embed_type == "timestep":
|
361 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
362 |
+
elif class_embed_type == "identity":
|
363 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
364 |
+
elif class_embed_type == "projection":
|
365 |
+
if projection_class_embeddings_input_dim is None:
|
366 |
+
raise ValueError(
|
367 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
368 |
+
)
|
369 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
370 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
371 |
+
# 2. it projects from an arbitrary input dimension.
|
372 |
+
#
|
373 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
374 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
375 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
376 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
377 |
+
elif class_embed_type == "simple_projection":
|
378 |
+
if projection_class_embeddings_input_dim is None:
|
379 |
+
raise ValueError(
|
380 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
381 |
+
)
|
382 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
383 |
+
else:
|
384 |
+
self.class_embedding = None
|
385 |
+
|
386 |
+
if addition_embed_type == "text":
|
387 |
+
if encoder_hid_dim is not None:
|
388 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
389 |
+
else:
|
390 |
+
text_time_embedding_from_dim = cross_attention_dim
|
391 |
+
|
392 |
+
self.add_embedding = TextTimeEmbedding(
|
393 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
394 |
+
)
|
395 |
+
elif addition_embed_type == "text_image":
|
396 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
397 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
398 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
399 |
+
self.add_embedding = TextImageTimeEmbedding(
|
400 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
401 |
+
)
|
402 |
+
elif addition_embed_type == "text_time":
|
403 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
404 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
405 |
+
elif addition_embed_type == "image":
|
406 |
+
# Kandinsky 2.2
|
407 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
408 |
+
elif addition_embed_type == "image_hint":
|
409 |
+
# Kandinsky 2.2 ControlNet
|
410 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
411 |
+
elif addition_embed_type is not None:
|
412 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
413 |
+
|
414 |
+
if time_embedding_act_fn is None:
|
415 |
+
self.time_embed_act = None
|
416 |
+
else:
|
417 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
418 |
+
|
419 |
+
self.down_blocks = nn.ModuleList([])
|
420 |
+
self.up_blocks = nn.ModuleList([])
|
421 |
+
|
422 |
+
if isinstance(only_cross_attention, bool):
|
423 |
+
if mid_block_only_cross_attention is None:
|
424 |
+
mid_block_only_cross_attention = only_cross_attention
|
425 |
+
|
426 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
427 |
+
|
428 |
+
if mid_block_only_cross_attention is None:
|
429 |
+
mid_block_only_cross_attention = False
|
430 |
+
|
431 |
+
if isinstance(num_attention_heads, int):
|
432 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
433 |
+
|
434 |
+
if isinstance(attention_head_dim, int):
|
435 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
436 |
+
|
437 |
+
if isinstance(cross_attention_dim, int):
|
438 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
439 |
+
|
440 |
+
if isinstance(layers_per_block, int):
|
441 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
442 |
+
|
443 |
+
if isinstance(transformer_layers_per_block, int):
|
444 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
445 |
+
if class_embeddings_concat:
|
446 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
447 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
448 |
+
# regular time embeddings
|
449 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
450 |
+
else:
|
451 |
+
blocks_time_embed_dim = time_embed_dim
|
452 |
+
|
453 |
+
# down
|
454 |
+
output_channel = block_out_channels[0]
|
455 |
+
for i, down_block_type in enumerate(down_block_types):
|
456 |
+
input_channel = output_channel
|
457 |
+
output_channel = block_out_channels[i]
|
458 |
+
is_final_block = i == len(block_out_channels) - 1
|
459 |
+
|
460 |
+
down_block = get_down_block(
|
461 |
+
down_block_type,
|
462 |
+
num_layers=layers_per_block[i],
|
463 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
464 |
+
in_channels=input_channel,
|
465 |
+
out_channels=output_channel,
|
466 |
+
temb_channels=blocks_time_embed_dim,
|
467 |
+
add_downsample=not is_final_block,
|
468 |
+
resnet_eps=norm_eps,
|
469 |
+
resnet_act_fn=act_fn,
|
470 |
+
resnet_groups=norm_num_groups,
|
471 |
+
cross_attention_dim=cross_attention_dim[i],
|
472 |
+
num_attention_heads=num_attention_heads[i],
|
473 |
+
downsample_padding=downsample_padding,
|
474 |
+
dual_cross_attention=dual_cross_attention,
|
475 |
+
use_linear_projection=use_linear_projection,
|
476 |
+
only_cross_attention=only_cross_attention[i],
|
477 |
+
upcast_attention=upcast_attention,
|
478 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
479 |
+
attention_type=attention_type,
|
480 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
481 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
482 |
+
cross_attention_norm=cross_attention_norm,
|
483 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
484 |
+
dropout=dropout,
|
485 |
+
)
|
486 |
+
self.down_blocks.append(down_block)
|
487 |
+
|
488 |
+
# mid
|
489 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
490 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
491 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
492 |
+
in_channels=block_out_channels[-1],
|
493 |
+
temb_channels=blocks_time_embed_dim,
|
494 |
+
dropout=dropout,
|
495 |
+
resnet_eps=norm_eps,
|
496 |
+
resnet_act_fn=act_fn,
|
497 |
+
output_scale_factor=mid_block_scale_factor,
|
498 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
499 |
+
cross_attention_dim=cross_attention_dim[-1],
|
500 |
+
num_attention_heads=num_attention_heads[-1],
|
501 |
+
resnet_groups=norm_num_groups,
|
502 |
+
dual_cross_attention=dual_cross_attention,
|
503 |
+
use_linear_projection=use_linear_projection,
|
504 |
+
upcast_attention=upcast_attention,
|
505 |
+
attention_type=attention_type,
|
506 |
+
)
|
507 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
508 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
509 |
+
in_channels=block_out_channels[-1],
|
510 |
+
temb_channels=blocks_time_embed_dim,
|
511 |
+
dropout=dropout,
|
512 |
+
resnet_eps=norm_eps,
|
513 |
+
resnet_act_fn=act_fn,
|
514 |
+
output_scale_factor=mid_block_scale_factor,
|
515 |
+
cross_attention_dim=cross_attention_dim[-1],
|
516 |
+
attention_head_dim=attention_head_dim[-1],
|
517 |
+
resnet_groups=norm_num_groups,
|
518 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
519 |
+
skip_time_act=resnet_skip_time_act,
|
520 |
+
only_cross_attention=mid_block_only_cross_attention,
|
521 |
+
cross_attention_norm=cross_attention_norm,
|
522 |
+
)
|
523 |
+
elif mid_block_type == "UNetMidBlock2D":
|
524 |
+
self.mid_block = UNetMidBlock2D(
|
525 |
+
in_channels=block_out_channels[-1],
|
526 |
+
temb_channels=blocks_time_embed_dim,
|
527 |
+
dropout=dropout,
|
528 |
+
num_layers=0,
|
529 |
+
resnet_eps=norm_eps,
|
530 |
+
resnet_act_fn=act_fn,
|
531 |
+
output_scale_factor=mid_block_scale_factor,
|
532 |
+
resnet_groups=norm_num_groups,
|
533 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
534 |
+
add_attention=False,
|
535 |
+
)
|
536 |
+
elif mid_block_type is None:
|
537 |
+
self.mid_block = None
|
538 |
+
else:
|
539 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
540 |
+
|
541 |
+
# count how many layers upsample the images
|
542 |
+
self.num_upsamplers = 0
|
543 |
+
|
544 |
+
# up
|
545 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
546 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
547 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
548 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
549 |
+
reversed_transformer_layers_per_block = (
|
550 |
+
list(reversed(transformer_layers_per_block))
|
551 |
+
if reverse_transformer_layers_per_block is None
|
552 |
+
else reverse_transformer_layers_per_block
|
553 |
+
)
|
554 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
555 |
+
|
556 |
+
output_channel = reversed_block_out_channels[0]
|
557 |
+
for i, up_block_type in enumerate(up_block_types):
|
558 |
+
is_final_block = i == len(block_out_channels) - 1
|
559 |
+
|
560 |
+
prev_output_channel = output_channel
|
561 |
+
output_channel = reversed_block_out_channels[i]
|
562 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
563 |
+
|
564 |
+
# add upsample block for all BUT final layer
|
565 |
+
if not is_final_block:
|
566 |
+
add_upsample = True
|
567 |
+
self.num_upsamplers += 1
|
568 |
+
else:
|
569 |
+
add_upsample = False
|
570 |
+
up_block = get_up_block(
|
571 |
+
up_block_type,
|
572 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
573 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
574 |
+
in_channels=input_channel,
|
575 |
+
out_channels=output_channel,
|
576 |
+
prev_output_channel=prev_output_channel,
|
577 |
+
temb_channels=blocks_time_embed_dim,
|
578 |
+
add_upsample=add_upsample,
|
579 |
+
resnet_eps=norm_eps,
|
580 |
+
resnet_act_fn=act_fn,
|
581 |
+
resolution_idx=i,
|
582 |
+
resnet_groups=norm_num_groups,
|
583 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
584 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
585 |
+
dual_cross_attention=dual_cross_attention,
|
586 |
+
use_linear_projection=use_linear_projection,
|
587 |
+
only_cross_attention=only_cross_attention[i],
|
588 |
+
upcast_attention=upcast_attention,
|
589 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
590 |
+
attention_type=attention_type,
|
591 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
592 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
593 |
+
cross_attention_norm=cross_attention_norm,
|
594 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
595 |
+
dropout=dropout,
|
596 |
+
)
|
597 |
+
|
598 |
+
self.up_blocks.append(up_block)
|
599 |
+
prev_output_channel = output_channel
|
600 |
+
|
601 |
+
|
602 |
+
|
603 |
+
|
604 |
+
# encode_output_chs = [
|
605 |
+
# # 320,
|
606 |
+
# # 320,
|
607 |
+
# # 320,
|
608 |
+
# 1280,
|
609 |
+
# 1280,
|
610 |
+
# 1280,
|
611 |
+
# 1280,
|
612 |
+
# 640,
|
613 |
+
# 640
|
614 |
+
# ]
|
615 |
+
|
616 |
+
# encode_output_chs2 = [
|
617 |
+
# # 320,
|
618 |
+
# # 320,
|
619 |
+
# # 320,
|
620 |
+
# 1280,
|
621 |
+
# 1280,
|
622 |
+
# 640,
|
623 |
+
# 640,
|
624 |
+
# 640,
|
625 |
+
# 320
|
626 |
+
# ]
|
627 |
+
|
628 |
+
# encode_num_head_chs3 = [
|
629 |
+
# # 5,
|
630 |
+
# # 5,
|
631 |
+
# # 10,
|
632 |
+
# 20,
|
633 |
+
# 20,
|
634 |
+
# 20,
|
635 |
+
# 10,
|
636 |
+
# 10,
|
637 |
+
# 10
|
638 |
+
# ]
|
639 |
+
|
640 |
+
|
641 |
+
# encode_num_layers_chs4 = [
|
642 |
+
# # 1,
|
643 |
+
# # 1,
|
644 |
+
# # 2,
|
645 |
+
# 10,
|
646 |
+
# 10,
|
647 |
+
# 10,
|
648 |
+
# 2,
|
649 |
+
# 2,
|
650 |
+
# 2
|
651 |
+
# ]
|
652 |
+
|
653 |
+
|
654 |
+
# self.warp_blks = nn.ModuleList([])
|
655 |
+
# self.warp_zeros = nn.ModuleList([])
|
656 |
+
|
657 |
+
# for in_ch, cont_ch,num_head,num_layers in zip(encode_output_chs, encode_output_chs2,encode_num_head_chs3,encode_num_layers_chs4):
|
658 |
+
# # dim_head = in_ch // self.num_heads
|
659 |
+
# # dim_head = dim_head // dim_head_denorm
|
660 |
+
|
661 |
+
# self.warp_blks.append(Transformer2DModel(
|
662 |
+
# num_attention_heads=num_head,
|
663 |
+
# attention_head_dim=64,
|
664 |
+
# in_channels=in_ch,
|
665 |
+
# num_layers = num_layers,
|
666 |
+
# cross_attention_dim = cont_ch,
|
667 |
+
# ))
|
668 |
+
|
669 |
+
# self.warp_zeros.append(zero_module(nn.Conv2d(in_ch, in_ch, 1, padding=0)))
|
670 |
+
|
671 |
+
|
672 |
+
|
673 |
+
# out
|
674 |
+
if norm_num_groups is not None:
|
675 |
+
self.conv_norm_out = nn.GroupNorm(
|
676 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
677 |
+
)
|
678 |
+
|
679 |
+
self.conv_act = get_activation(act_fn)
|
680 |
+
|
681 |
+
else:
|
682 |
+
self.conv_norm_out = None
|
683 |
+
self.conv_act = None
|
684 |
+
|
685 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
686 |
+
self.conv_out = nn.Conv2d(
|
687 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
688 |
+
)
|
689 |
+
|
690 |
+
if attention_type in ["gated", "gated-text-image"]:
|
691 |
+
positive_len = 768
|
692 |
+
if isinstance(cross_attention_dim, int):
|
693 |
+
positive_len = cross_attention_dim
|
694 |
+
elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
|
695 |
+
positive_len = cross_attention_dim[0]
|
696 |
+
|
697 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
698 |
+
self.position_net = PositionNet(
|
699 |
+
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
700 |
+
)
|
701 |
+
|
702 |
+
|
703 |
+
|
704 |
+
|
705 |
+
@property
|
706 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
707 |
+
r"""
|
708 |
+
Returns:
|
709 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
710 |
+
indexed by its weight name.
|
711 |
+
"""
|
712 |
+
# set recursively
|
713 |
+
processors = {}
|
714 |
+
|
715 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
716 |
+
if hasattr(module, "get_processor"):
|
717 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
718 |
+
|
719 |
+
for sub_name, child in module.named_children():
|
720 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
721 |
+
|
722 |
+
return processors
|
723 |
+
|
724 |
+
for name, module in self.named_children():
|
725 |
+
fn_recursive_add_processors(name, module, processors)
|
726 |
+
|
727 |
+
return processors
|
728 |
+
|
729 |
+
def set_attn_processor(
|
730 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
731 |
+
):
|
732 |
+
r"""
|
733 |
+
Sets the attention processor to use to compute attention.
|
734 |
+
|
735 |
+
Parameters:
|
736 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
737 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
738 |
+
for **all** `Attention` layers.
|
739 |
+
|
740 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
741 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
742 |
+
|
743 |
+
"""
|
744 |
+
count = len(self.attn_processors.keys())
|
745 |
+
|
746 |
+
if isinstance(processor, dict) and len(processor) != count:
|
747 |
+
raise ValueError(
|
748 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
749 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
750 |
+
)
|
751 |
+
|
752 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
753 |
+
if hasattr(module, "set_processor"):
|
754 |
+
if not isinstance(processor, dict):
|
755 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
756 |
+
else:
|
757 |
+
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
758 |
+
|
759 |
+
for sub_name, child in module.named_children():
|
760 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
761 |
+
|
762 |
+
for name, module in self.named_children():
|
763 |
+
fn_recursive_attn_processor(name, module, processor)
|
764 |
+
|
765 |
+
def set_default_attn_processor(self):
|
766 |
+
"""
|
767 |
+
Disables custom attention processors and sets the default attention implementation.
|
768 |
+
"""
|
769 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
770 |
+
processor = AttnAddedKVProcessor()
|
771 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
772 |
+
processor = AttnProcessor()
|
773 |
+
else:
|
774 |
+
raise ValueError(
|
775 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
776 |
+
)
|
777 |
+
|
778 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
779 |
+
|
780 |
+
def set_attention_slice(self, slice_size):
|
781 |
+
r"""
|
782 |
+
Enable sliced attention computation.
|
783 |
+
|
784 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
785 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
786 |
+
|
787 |
+
Args:
|
788 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
789 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
790 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
791 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
792 |
+
must be a multiple of `slice_size`.
|
793 |
+
"""
|
794 |
+
sliceable_head_dims = []
|
795 |
+
|
796 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
797 |
+
if hasattr(module, "set_attention_slice"):
|
798 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
799 |
+
|
800 |
+
for child in module.children():
|
801 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
802 |
+
|
803 |
+
# retrieve number of attention layers
|
804 |
+
for module in self.children():
|
805 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
806 |
+
|
807 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
808 |
+
|
809 |
+
if slice_size == "auto":
|
810 |
+
# half the attention head size is usually a good trade-off between
|
811 |
+
# speed and memory
|
812 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
813 |
+
elif slice_size == "max":
|
814 |
+
# make smallest slice possible
|
815 |
+
slice_size = num_sliceable_layers * [1]
|
816 |
+
|
817 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
818 |
+
|
819 |
+
if len(slice_size) != len(sliceable_head_dims):
|
820 |
+
raise ValueError(
|
821 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
822 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
823 |
+
)
|
824 |
+
|
825 |
+
for i in range(len(slice_size)):
|
826 |
+
size = slice_size[i]
|
827 |
+
dim = sliceable_head_dims[i]
|
828 |
+
if size is not None and size > dim:
|
829 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
830 |
+
|
831 |
+
# Recursively walk through all the children.
|
832 |
+
# Any children which exposes the set_attention_slice method
|
833 |
+
# gets the message
|
834 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
835 |
+
if hasattr(module, "set_attention_slice"):
|
836 |
+
module.set_attention_slice(slice_size.pop())
|
837 |
+
|
838 |
+
for child in module.children():
|
839 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
840 |
+
|
841 |
+
reversed_slice_size = list(reversed(slice_size))
|
842 |
+
for module in self.children():
|
843 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
844 |
+
|
845 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
846 |
+
if hasattr(module, "gradient_checkpointing"):
|
847 |
+
module.gradient_checkpointing = value
|
848 |
+
|
849 |
+
def enable_freeu(self, s1, s2, b1, b2):
|
850 |
+
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
851 |
+
|
852 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
853 |
+
|
854 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
855 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
856 |
+
|
857 |
+
Args:
|
858 |
+
s1 (`float`):
|
859 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
860 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
861 |
+
s2 (`float`):
|
862 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
863 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
864 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
865 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
866 |
+
"""
|
867 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
868 |
+
setattr(upsample_block, "s1", s1)
|
869 |
+
setattr(upsample_block, "s2", s2)
|
870 |
+
setattr(upsample_block, "b1", b1)
|
871 |
+
setattr(upsample_block, "b2", b2)
|
872 |
+
|
873 |
+
def disable_freeu(self):
|
874 |
+
"""Disables the FreeU mechanism."""
|
875 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
876 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
877 |
+
for k in freeu_keys:
|
878 |
+
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
|
879 |
+
setattr(upsample_block, k, None)
|
880 |
+
|
881 |
+
def fuse_qkv_projections(self):
|
882 |
+
"""
|
883 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
|
884 |
+
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
|
885 |
+
|
886 |
+
<Tip warning={true}>
|
887 |
+
|
888 |
+
This API is 🧪 experimental.
|
889 |
+
|
890 |
+
</Tip>
|
891 |
+
"""
|
892 |
+
self.original_attn_processors = None
|
893 |
+
|
894 |
+
for _, attn_processor in self.attn_processors.items():
|
895 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
896 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
897 |
+
|
898 |
+
self.original_attn_processors = self.attn_processors
|
899 |
+
|
900 |
+
for module in self.modules():
|
901 |
+
if isinstance(module, Attention):
|
902 |
+
module.fuse_projections(fuse=True)
|
903 |
+
|
904 |
+
def unfuse_qkv_projections(self):
|
905 |
+
"""Disables the fused QKV projection if enabled.
|
906 |
+
|
907 |
+
<Tip warning={true}>
|
908 |
+
|
909 |
+
This API is 🧪 experimental.
|
910 |
+
|
911 |
+
</Tip>
|
912 |
+
|
913 |
+
"""
|
914 |
+
if self.original_attn_processors is not None:
|
915 |
+
self.set_attn_processor(self.original_attn_processors)
|
916 |
+
|
917 |
+
def forward(
|
918 |
+
self,
|
919 |
+
sample: torch.FloatTensor,
|
920 |
+
timestep: Union[torch.Tensor, float, int],
|
921 |
+
encoder_hidden_states: torch.Tensor,
|
922 |
+
class_labels: Optional[torch.Tensor] = None,
|
923 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
924 |
+
attention_mask: Optional[torch.Tensor] = None,
|
925 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
926 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
927 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
928 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
929 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
930 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
931 |
+
return_dict: bool = True,
|
932 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
933 |
+
r"""
|
934 |
+
The [`UNet2DConditionModel`] forward method.
|
935 |
+
|
936 |
+
Args:
|
937 |
+
sample (`torch.FloatTensor`):
|
938 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
939 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
940 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
941 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
942 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
943 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
944 |
+
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
945 |
+
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
946 |
+
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
947 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
948 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
949 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
950 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
951 |
+
cross_attention_kwargs (`dict`, *optional*):
|
952 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
953 |
+
`self.processor` in
|
954 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
955 |
+
added_cond_kwargs: (`dict`, *optional*):
|
956 |
+
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
957 |
+
are passed along to the UNet blocks.
|
958 |
+
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
959 |
+
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
960 |
+
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
961 |
+
A tensor that if specified is added to the residual of the middle unet block.
|
962 |
+
encoder_attention_mask (`torch.Tensor`):
|
963 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
964 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
965 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
966 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
967 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
968 |
+
tuple.
|
969 |
+
cross_attention_kwargs (`dict`, *optional*):
|
970 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
971 |
+
added_cond_kwargs: (`dict`, *optional*):
|
972 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
973 |
+
are passed along to the UNet blocks.
|
974 |
+
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
975 |
+
additional residuals to be added to UNet long skip connections from down blocks to up blocks for
|
976 |
+
example from ControlNet side model(s)
|
977 |
+
mid_block_additional_residual (`torch.Tensor`, *optional*):
|
978 |
+
additional residual to be added to UNet mid block output, for example from ControlNet side model
|
979 |
+
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
980 |
+
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
981 |
+
|
982 |
+
Returns:
|
983 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
984 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
985 |
+
a `tuple` is returned where the first element is the sample tensor.
|
986 |
+
"""
|
987 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
988 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
989 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
990 |
+
# on the fly if necessary.
|
991 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
992 |
+
|
993 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
994 |
+
forward_upsample_size = False
|
995 |
+
upsample_size = None
|
996 |
+
|
997 |
+
for dim in sample.shape[-2:]:
|
998 |
+
if dim % default_overall_up_factor != 0:
|
999 |
+
# Forward upsample size to force interpolation output size.
|
1000 |
+
forward_upsample_size = True
|
1001 |
+
break
|
1002 |
+
|
1003 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
1004 |
+
# expects mask of shape:
|
1005 |
+
# [batch, key_tokens]
|
1006 |
+
# adds singleton query_tokens dimension:
|
1007 |
+
# [batch, 1, key_tokens]
|
1008 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
1009 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
1010 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
1011 |
+
if attention_mask is not None:
|
1012 |
+
# assume that mask is expressed as:
|
1013 |
+
# (1 = keep, 0 = discard)
|
1014 |
+
# convert mask into a bias that can be added to attention scores:
|
1015 |
+
# (keep = +0, discard = -10000.0)
|
1016 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
1017 |
+
attention_mask = attention_mask.unsqueeze(1)
|
1018 |
+
|
1019 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
1020 |
+
if encoder_attention_mask is not None:
|
1021 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
1022 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
1023 |
+
|
1024 |
+
# 0. center input if necessary
|
1025 |
+
if self.config.center_input_sample:
|
1026 |
+
sample = 2 * sample - 1.0
|
1027 |
+
|
1028 |
+
# 1. time
|
1029 |
+
timesteps = timestep
|
1030 |
+
if not torch.is_tensor(timesteps):
|
1031 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
1032 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
1033 |
+
is_mps = sample.device.type == "mps"
|
1034 |
+
if isinstance(timestep, float):
|
1035 |
+
dtype = torch.float32 if is_mps else torch.float64
|
1036 |
+
else:
|
1037 |
+
dtype = torch.int32 if is_mps else torch.int64
|
1038 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
1039 |
+
elif len(timesteps.shape) == 0:
|
1040 |
+
timesteps = timesteps[None].to(sample.device)
|
1041 |
+
|
1042 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1043 |
+
timesteps = timesteps.expand(sample.shape[0])
|
1044 |
+
|
1045 |
+
t_emb = self.time_proj(timesteps)
|
1046 |
+
|
1047 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1048 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
1049 |
+
# there might be better ways to encapsulate this.
|
1050 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
1051 |
+
|
1052 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
1053 |
+
aug_emb = None
|
1054 |
+
|
1055 |
+
if self.class_embedding is not None:
|
1056 |
+
if class_labels is None:
|
1057 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
1058 |
+
|
1059 |
+
if self.config.class_embed_type == "timestep":
|
1060 |
+
class_labels = self.time_proj(class_labels)
|
1061 |
+
|
1062 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1063 |
+
# there might be better ways to encapsulate this.
|
1064 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
1065 |
+
|
1066 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
1067 |
+
|
1068 |
+
if self.config.class_embeddings_concat:
|
1069 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
1070 |
+
else:
|
1071 |
+
emb = emb + class_emb
|
1072 |
+
|
1073 |
+
if self.config.addition_embed_type == "text":
|
1074 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
1075 |
+
elif self.config.addition_embed_type == "text_image":
|
1076 |
+
# Kandinsky 2.1 - style
|
1077 |
+
if "image_embeds" not in added_cond_kwargs:
|
1078 |
+
raise ValueError(
|
1079 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1080 |
+
)
|
1081 |
+
|
1082 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1083 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
1084 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
1085 |
+
elif self.config.addition_embed_type == "text_time":
|
1086 |
+
# SDXL - style
|
1087 |
+
if "text_embeds" not in added_cond_kwargs:
|
1088 |
+
raise ValueError(
|
1089 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
1090 |
+
)
|
1091 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
1092 |
+
if "time_ids" not in added_cond_kwargs:
|
1093 |
+
raise ValueError(
|
1094 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
1095 |
+
)
|
1096 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
1097 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
1098 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
1099 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
1100 |
+
add_embeds = add_embeds.to(emb.dtype)
|
1101 |
+
aug_emb = self.add_embedding(add_embeds)
|
1102 |
+
elif self.config.addition_embed_type == "image":
|
1103 |
+
# Kandinsky 2.2 - style
|
1104 |
+
if "image_embeds" not in added_cond_kwargs:
|
1105 |
+
raise ValueError(
|
1106 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1107 |
+
)
|
1108 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1109 |
+
aug_emb = self.add_embedding(image_embs)
|
1110 |
+
elif self.config.addition_embed_type == "image_hint":
|
1111 |
+
# Kandinsky 2.2 - style
|
1112 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
1113 |
+
raise ValueError(
|
1114 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1115 |
+
)
|
1116 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1117 |
+
hint = added_cond_kwargs.get("hint")
|
1118 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
1119 |
+
sample = torch.cat([sample, hint], dim=1)
|
1120 |
+
|
1121 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
1122 |
+
|
1123 |
+
if self.time_embed_act is not None:
|
1124 |
+
emb = self.time_embed_act(emb)
|
1125 |
+
|
1126 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1127 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1128 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1129 |
+
# Kadinsky 2.1 - style
|
1130 |
+
if "image_embeds" not in added_cond_kwargs:
|
1131 |
+
raise ValueError(
|
1132 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1133 |
+
)
|
1134 |
+
|
1135 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1136 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1137 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1138 |
+
# Kandinsky 2.2 - style
|
1139 |
+
if "image_embeds" not in added_cond_kwargs:
|
1140 |
+
raise ValueError(
|
1141 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1142 |
+
)
|
1143 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1144 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1145 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
|
1146 |
+
if "image_embeds" not in added_cond_kwargs:
|
1147 |
+
raise ValueError(
|
1148 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1149 |
+
)
|
1150 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1151 |
+
image_embeds = self.encoder_hid_proj(image_embeds).to(encoder_hidden_states.dtype)
|
1152 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states, image_embeds], dim=1)
|
1153 |
+
|
1154 |
+
# 2. pre-process
|
1155 |
+
sample = self.conv_in(sample)
|
1156 |
+
garment_features=[]
|
1157 |
+
|
1158 |
+
# 2.5 GLIGEN position net
|
1159 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
1160 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1161 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
1162 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
1163 |
+
|
1164 |
+
|
1165 |
+
# 3. down
|
1166 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
1167 |
+
if USE_PEFT_BACKEND:
|
1168 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1169 |
+
scale_lora_layers(self, lora_scale)
|
1170 |
+
|
1171 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1172 |
+
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
1173 |
+
is_adapter = down_intrablock_additional_residuals is not None
|
1174 |
+
# maintain backward compatibility for legacy usage, where
|
1175 |
+
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
1176 |
+
# but can only use one or the other
|
1177 |
+
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
1178 |
+
deprecate(
|
1179 |
+
"T2I should not use down_block_additional_residuals",
|
1180 |
+
"1.3.0",
|
1181 |
+
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
1182 |
+
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
1183 |
+
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
1184 |
+
standard_warn=False,
|
1185 |
+
)
|
1186 |
+
down_intrablock_additional_residuals = down_block_additional_residuals
|
1187 |
+
is_adapter = True
|
1188 |
+
|
1189 |
+
down_block_res_samples = (sample,)
|
1190 |
+
for downsample_block in self.down_blocks:
|
1191 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1192 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1193 |
+
additional_residuals = {}
|
1194 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1195 |
+
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
1196 |
+
|
1197 |
+
sample, res_samples,out_garment_feat = downsample_block(
|
1198 |
+
hidden_states=sample,
|
1199 |
+
temb=emb,
|
1200 |
+
encoder_hidden_states=encoder_hidden_states,
|
1201 |
+
attention_mask=attention_mask,
|
1202 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1203 |
+
encoder_attention_mask=encoder_attention_mask,
|
1204 |
+
**additional_residuals,
|
1205 |
+
)
|
1206 |
+
garment_features += out_garment_feat
|
1207 |
+
else:
|
1208 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
|
1209 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1210 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1211 |
+
|
1212 |
+
down_block_res_samples += res_samples
|
1213 |
+
|
1214 |
+
|
1215 |
+
if is_controlnet:
|
1216 |
+
new_down_block_res_samples = ()
|
1217 |
+
|
1218 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1219 |
+
down_block_res_samples, down_block_additional_residuals
|
1220 |
+
):
|
1221 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1222 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1223 |
+
|
1224 |
+
down_block_res_samples = new_down_block_res_samples
|
1225 |
+
|
1226 |
+
# 4. mid
|
1227 |
+
if self.mid_block is not None:
|
1228 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
1229 |
+
sample,out_garment_feat = self.mid_block(
|
1230 |
+
sample,
|
1231 |
+
emb,
|
1232 |
+
encoder_hidden_states=encoder_hidden_states,
|
1233 |
+
attention_mask=attention_mask,
|
1234 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1235 |
+
encoder_attention_mask=encoder_attention_mask,
|
1236 |
+
)
|
1237 |
+
garment_features += out_garment_feat
|
1238 |
+
|
1239 |
+
else:
|
1240 |
+
sample = self.mid_block(sample, emb)
|
1241 |
+
|
1242 |
+
# To support T2I-Adapter-XL
|
1243 |
+
if (
|
1244 |
+
is_adapter
|
1245 |
+
and len(down_intrablock_additional_residuals) > 0
|
1246 |
+
and sample.shape == down_intrablock_additional_residuals[0].shape
|
1247 |
+
):
|
1248 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1249 |
+
|
1250 |
+
if is_controlnet:
|
1251 |
+
sample = sample + mid_block_additional_residual
|
1252 |
+
|
1253 |
+
|
1254 |
+
|
1255 |
+
# 5. up
|
1256 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1257 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1258 |
+
|
1259 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1260 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1261 |
+
|
1262 |
+
# if we have not reached the final block and need to forward the
|
1263 |
+
# upsample size, we do it here
|
1264 |
+
if not is_final_block and forward_upsample_size:
|
1265 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1266 |
+
|
1267 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1268 |
+
sample,out_garment_feat = upsample_block(
|
1269 |
+
hidden_states=sample,
|
1270 |
+
temb=emb,
|
1271 |
+
res_hidden_states_tuple=res_samples,
|
1272 |
+
encoder_hidden_states=encoder_hidden_states,
|
1273 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1274 |
+
upsample_size=upsample_size,
|
1275 |
+
attention_mask=attention_mask,
|
1276 |
+
encoder_attention_mask=encoder_attention_mask,
|
1277 |
+
)
|
1278 |
+
garment_features += out_garment_feat
|
1279 |
+
|
1280 |
+
|
1281 |
+
if not return_dict:
|
1282 |
+
return (sample,),garment_features
|
1283 |
+
|
1284 |
+
return UNet2DConditionOutput(sample=sample),garment_features
|
src/unet_hacked_tryon.py
ADDED
@@ -0,0 +1,1395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
23 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
24 |
+
from diffusers.models.activations import get_activation
|
25 |
+
from diffusers.models.attention_processor import (
|
26 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
27 |
+
CROSS_ATTENTION_PROCESSORS,
|
28 |
+
Attention,
|
29 |
+
AttentionProcessor,
|
30 |
+
AttnAddedKVProcessor,
|
31 |
+
AttnProcessor,
|
32 |
+
)
|
33 |
+
from einops import rearrange
|
34 |
+
|
35 |
+
from diffusers.models.embeddings import (
|
36 |
+
GaussianFourierProjection,
|
37 |
+
ImageHintTimeEmbedding,
|
38 |
+
ImageProjection,
|
39 |
+
ImageTimeEmbedding,
|
40 |
+
PositionNet,
|
41 |
+
TextImageProjection,
|
42 |
+
TextImageTimeEmbedding,
|
43 |
+
TextTimeEmbedding,
|
44 |
+
TimestepEmbedding,
|
45 |
+
Timesteps,
|
46 |
+
)
|
47 |
+
|
48 |
+
|
49 |
+
from diffusers.models.modeling_utils import ModelMixin
|
50 |
+
from src.unet_block_hacked_tryon import (
|
51 |
+
UNetMidBlock2D,
|
52 |
+
UNetMidBlock2DCrossAttn,
|
53 |
+
UNetMidBlock2DSimpleCrossAttn,
|
54 |
+
get_down_block,
|
55 |
+
get_up_block,
|
56 |
+
)
|
57 |
+
from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
|
58 |
+
from diffusers.models.transformer_2d import Transformer2DModel
|
59 |
+
import math
|
60 |
+
|
61 |
+
from ip_adapter.ip_adapter import Resampler
|
62 |
+
|
63 |
+
|
64 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
65 |
+
|
66 |
+
|
67 |
+
# def FeedForward(dim, mult=4):
|
68 |
+
# inner_dim = int(dim * mult)
|
69 |
+
# return nn.Sequential(
|
70 |
+
# nn.LayerNorm(dim),
|
71 |
+
# nn.Linear(dim, inner_dim, bias=False),
|
72 |
+
# nn.GELU(),
|
73 |
+
# nn.Linear(inner_dim, dim, bias=False),
|
74 |
+
# )
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
# def reshape_tensor(x, heads):
|
79 |
+
# bs, length, width = x.shape
|
80 |
+
# # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
81 |
+
# x = x.view(bs, length, heads, -1)
|
82 |
+
# # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
83 |
+
# x = x.transpose(1, 2)
|
84 |
+
# # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
85 |
+
# x = x.reshape(bs, heads, length, -1)
|
86 |
+
# return x
|
87 |
+
|
88 |
+
|
89 |
+
# class PerceiverAttention(nn.Module):
|
90 |
+
# def __init__(self, *, dim, dim_head=64, heads=8):
|
91 |
+
# super().__init__()
|
92 |
+
# self.scale = dim_head**-0.5
|
93 |
+
# self.dim_head = dim_head
|
94 |
+
# self.heads = heads
|
95 |
+
# inner_dim = dim_head * heads
|
96 |
+
|
97 |
+
# self.norm1 = nn.LayerNorm(dim)
|
98 |
+
# self.norm2 = nn.LayerNorm(dim)
|
99 |
+
|
100 |
+
# self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
101 |
+
# self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
102 |
+
# self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
103 |
+
|
104 |
+
# def forward(self, x, latents):
|
105 |
+
# """
|
106 |
+
# Args:
|
107 |
+
# x (torch.Tensor): image features
|
108 |
+
# shape (b, n1, D)
|
109 |
+
# latent (torch.Tensor): latent features
|
110 |
+
# shape (b, n2, D)
|
111 |
+
# """
|
112 |
+
# x = self.norm1(x)
|
113 |
+
# latents = self.norm2(latents)
|
114 |
+
|
115 |
+
# b, l, _ = latents.shape
|
116 |
+
|
117 |
+
# q = self.to_q(latents)
|
118 |
+
# kv_input = torch.cat((x, latents), dim=-2)
|
119 |
+
# k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
120 |
+
|
121 |
+
# q = reshape_tensor(q, self.heads)
|
122 |
+
# k = reshape_tensor(k, self.heads)
|
123 |
+
# v = reshape_tensor(v, self.heads)
|
124 |
+
|
125 |
+
# # attention
|
126 |
+
# scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
127 |
+
# weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
128 |
+
# weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
129 |
+
# out = weight @ v
|
130 |
+
|
131 |
+
# out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
132 |
+
|
133 |
+
# return self.to_out(out)
|
134 |
+
|
135 |
+
|
136 |
+
# class Resampler(nn.Module):
|
137 |
+
# def __init__(
|
138 |
+
# self,
|
139 |
+
# dim=1024,
|
140 |
+
# depth=8,
|
141 |
+
# dim_head=64,
|
142 |
+
# heads=16,
|
143 |
+
# num_queries=8,
|
144 |
+
# embedding_dim=768,
|
145 |
+
# output_dim=1024,
|
146 |
+
# ff_mult=4,
|
147 |
+
# max_seq_len: int = 257, # CLIP tokens + CLS token
|
148 |
+
# apply_pos_emb: bool = False,
|
149 |
+
# num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
|
150 |
+
# ):
|
151 |
+
# super().__init__()
|
152 |
+
|
153 |
+
# self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
154 |
+
|
155 |
+
# self.proj_in = nn.Linear(embedding_dim, dim)
|
156 |
+
|
157 |
+
# self.proj_out = nn.Linear(dim, output_dim)
|
158 |
+
# self.norm_out = nn.LayerNorm(output_dim)
|
159 |
+
|
160 |
+
# self.layers = nn.ModuleList([])
|
161 |
+
# for _ in range(depth):
|
162 |
+
# self.layers.append(
|
163 |
+
# nn.ModuleList(
|
164 |
+
# [
|
165 |
+
# PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
166 |
+
# FeedForward(dim=dim, mult=ff_mult),
|
167 |
+
# ]
|
168 |
+
# )
|
169 |
+
# )
|
170 |
+
|
171 |
+
# def forward(self, x):
|
172 |
+
|
173 |
+
# latents = self.latents.repeat(x.size(0), 1, 1)
|
174 |
+
|
175 |
+
# x = self.proj_in(x)
|
176 |
+
|
177 |
+
|
178 |
+
# for attn, ff in self.layers:
|
179 |
+
# latents = attn(x, latents) + latents
|
180 |
+
# latents = ff(latents) + latents
|
181 |
+
|
182 |
+
# latents = self.proj_out(latents)
|
183 |
+
# return self.norm_out(latents)
|
184 |
+
|
185 |
+
|
186 |
+
def zero_module(module):
|
187 |
+
for p in module.parameters():
|
188 |
+
nn.init.zeros_(p)
|
189 |
+
return module
|
190 |
+
|
191 |
+
@dataclass
|
192 |
+
class UNet2DConditionOutput(BaseOutput):
|
193 |
+
"""
|
194 |
+
The output of [`UNet2DConditionModel`].
|
195 |
+
|
196 |
+
Args:
|
197 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
198 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
199 |
+
"""
|
200 |
+
|
201 |
+
sample: torch.FloatTensor = None
|
202 |
+
|
203 |
+
|
204 |
+
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
205 |
+
r"""
|
206 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
207 |
+
shaped output.
|
208 |
+
|
209 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
210 |
+
for all models (such as downloading or saving).
|
211 |
+
|
212 |
+
Parameters:
|
213 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
214 |
+
Height and width of input/output sample.
|
215 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
216 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
217 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
218 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
219 |
+
Whether to flip the sin to cos in the time embedding.
|
220 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
221 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
222 |
+
The tuple of downsample blocks to use.
|
223 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
224 |
+
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
225 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
226 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
227 |
+
The tuple of upsample blocks to use.
|
228 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
229 |
+
Whether to include self-attention in the basic transformer blocks, see
|
230 |
+
[`~models.attention.BasicTransformerBlock`].
|
231 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
232 |
+
The tuple of output channels for each block.
|
233 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
234 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
235 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
236 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
237 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
238 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
239 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
240 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
241 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
242 |
+
The dimension of the cross attention features.
|
243 |
+
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
244 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
245 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
246 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
247 |
+
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
248 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
249 |
+
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
250 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
251 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
252 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
253 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
254 |
+
dimension to `cross_attention_dim`.
|
255 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
256 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
257 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
258 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
259 |
+
num_attention_heads (`int`, *optional*):
|
260 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
261 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
262 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
263 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
264 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
265 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
266 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
267 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
268 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
269 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
270 |
+
Dimension for the timestep embeddings.
|
271 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
272 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
273 |
+
class conditioning with `class_embed_type` equal to `None`.
|
274 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
275 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
276 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
277 |
+
An optional override for the dimension of the projected time embedding.
|
278 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
279 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
280 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
281 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
282 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
283 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
284 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
285 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
|
286 |
+
*optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
|
287 |
+
*optional*): The dimension of the `class_labels` input when
|
288 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
289 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
290 |
+
embeddings with the class embeddings.
|
291 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
292 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
293 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
294 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
295 |
+
otherwise.
|
296 |
+
"""
|
297 |
+
|
298 |
+
_supports_gradient_checkpointing = True
|
299 |
+
|
300 |
+
@register_to_config
|
301 |
+
def __init__(
|
302 |
+
self,
|
303 |
+
sample_size: Optional[int] = None,
|
304 |
+
in_channels: int = 4,
|
305 |
+
out_channels: int = 4,
|
306 |
+
center_input_sample: bool = False,
|
307 |
+
flip_sin_to_cos: bool = True,
|
308 |
+
freq_shift: int = 0,
|
309 |
+
down_block_types: Tuple[str] = (
|
310 |
+
"CrossAttnDownBlock2D",
|
311 |
+
"CrossAttnDownBlock2D",
|
312 |
+
"CrossAttnDownBlock2D",
|
313 |
+
"DownBlock2D",
|
314 |
+
),
|
315 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
316 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
317 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
318 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
319 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
320 |
+
downsample_padding: int = 1,
|
321 |
+
mid_block_scale_factor: float = 1,
|
322 |
+
dropout: float = 0.0,
|
323 |
+
act_fn: str = "silu",
|
324 |
+
norm_num_groups: Optional[int] = 32,
|
325 |
+
norm_eps: float = 1e-5,
|
326 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
327 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
328 |
+
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
329 |
+
encoder_hid_dim: Optional[int] = None,
|
330 |
+
encoder_hid_dim_type: Optional[str] = None,
|
331 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
332 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
333 |
+
dual_cross_attention: bool = False,
|
334 |
+
use_linear_projection: bool = False,
|
335 |
+
class_embed_type: Optional[str] = None,
|
336 |
+
addition_embed_type: Optional[str] = None,
|
337 |
+
addition_time_embed_dim: Optional[int] = None,
|
338 |
+
num_class_embeds: Optional[int] = None,
|
339 |
+
upcast_attention: bool = False,
|
340 |
+
resnet_time_scale_shift: str = "default",
|
341 |
+
resnet_skip_time_act: bool = False,
|
342 |
+
resnet_out_scale_factor: int = 1.0,
|
343 |
+
time_embedding_type: str = "positional",
|
344 |
+
time_embedding_dim: Optional[int] = None,
|
345 |
+
time_embedding_act_fn: Optional[str] = None,
|
346 |
+
timestep_post_act: Optional[str] = None,
|
347 |
+
time_cond_proj_dim: Optional[int] = None,
|
348 |
+
conv_in_kernel: int = 3,
|
349 |
+
conv_out_kernel: int = 3,
|
350 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
351 |
+
attention_type: str = "default",
|
352 |
+
class_embeddings_concat: bool = False,
|
353 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
354 |
+
cross_attention_norm: Optional[str] = None,
|
355 |
+
addition_embed_type_num_heads=64,
|
356 |
+
):
|
357 |
+
super().__init__()
|
358 |
+
|
359 |
+
self.sample_size = sample_size
|
360 |
+
|
361 |
+
if num_attention_heads is not None:
|
362 |
+
raise ValueError(
|
363 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
364 |
+
)
|
365 |
+
|
366 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
367 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
368 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
369 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
370 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
371 |
+
# which is why we correct for the naming here.
|
372 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
373 |
+
|
374 |
+
# Check inputs
|
375 |
+
if len(down_block_types) != len(up_block_types):
|
376 |
+
raise ValueError(
|
377 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
378 |
+
)
|
379 |
+
|
380 |
+
if len(block_out_channels) != len(down_block_types):
|
381 |
+
raise ValueError(
|
382 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
383 |
+
)
|
384 |
+
|
385 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
386 |
+
raise ValueError(
|
387 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
388 |
+
)
|
389 |
+
|
390 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
391 |
+
raise ValueError(
|
392 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
393 |
+
)
|
394 |
+
|
395 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
396 |
+
raise ValueError(
|
397 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
398 |
+
)
|
399 |
+
|
400 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
401 |
+
raise ValueError(
|
402 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
403 |
+
)
|
404 |
+
|
405 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
406 |
+
raise ValueError(
|
407 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
408 |
+
)
|
409 |
+
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
|
410 |
+
for layer_number_per_block in transformer_layers_per_block:
|
411 |
+
if isinstance(layer_number_per_block, list):
|
412 |
+
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
|
413 |
+
|
414 |
+
# input
|
415 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
416 |
+
self.conv_in = nn.Conv2d(
|
417 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
418 |
+
)
|
419 |
+
|
420 |
+
# time
|
421 |
+
if time_embedding_type == "fourier":
|
422 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
423 |
+
if time_embed_dim % 2 != 0:
|
424 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
425 |
+
self.time_proj = GaussianFourierProjection(
|
426 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
427 |
+
)
|
428 |
+
timestep_input_dim = time_embed_dim
|
429 |
+
elif time_embedding_type == "positional":
|
430 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
431 |
+
|
432 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
433 |
+
timestep_input_dim = block_out_channels[0]
|
434 |
+
else:
|
435 |
+
raise ValueError(
|
436 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
437 |
+
)
|
438 |
+
|
439 |
+
self.time_embedding = TimestepEmbedding(
|
440 |
+
timestep_input_dim,
|
441 |
+
time_embed_dim,
|
442 |
+
act_fn=act_fn,
|
443 |
+
post_act_fn=timestep_post_act,
|
444 |
+
cond_proj_dim=time_cond_proj_dim,
|
445 |
+
)
|
446 |
+
|
447 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
448 |
+
encoder_hid_dim_type = "text_proj"
|
449 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
450 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
451 |
+
|
452 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
453 |
+
raise ValueError(
|
454 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
455 |
+
)
|
456 |
+
|
457 |
+
if encoder_hid_dim_type == "text_proj":
|
458 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
459 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
460 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
461 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
462 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
463 |
+
self.encoder_hid_proj = TextImageProjection(
|
464 |
+
text_embed_dim=encoder_hid_dim,
|
465 |
+
image_embed_dim=cross_attention_dim,
|
466 |
+
cross_attention_dim=cross_attention_dim,
|
467 |
+
)
|
468 |
+
elif encoder_hid_dim_type == "image_proj":
|
469 |
+
# Kandinsky 2.2
|
470 |
+
self.encoder_hid_proj = ImageProjection(
|
471 |
+
image_embed_dim=encoder_hid_dim,
|
472 |
+
cross_attention_dim=cross_attention_dim,
|
473 |
+
)
|
474 |
+
elif encoder_hid_dim_type == "ip_image_proj":
|
475 |
+
# Kandinsky 2.2
|
476 |
+
self.encoder_hid_proj = Resampler(
|
477 |
+
dim=1280,
|
478 |
+
depth=4,
|
479 |
+
dim_head=64,
|
480 |
+
heads=20,
|
481 |
+
num_queries=16,
|
482 |
+
embedding_dim=encoder_hid_dim,
|
483 |
+
output_dim=self.config.cross_attention_dim,
|
484 |
+
ff_mult=4,
|
485 |
+
)
|
486 |
+
|
487 |
+
|
488 |
+
elif encoder_hid_dim_type is not None:
|
489 |
+
raise ValueError(
|
490 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
491 |
+
)
|
492 |
+
else:
|
493 |
+
self.encoder_hid_proj = None
|
494 |
+
|
495 |
+
# class embedding
|
496 |
+
if class_embed_type is None and num_class_embeds is not None:
|
497 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
498 |
+
elif class_embed_type == "timestep":
|
499 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
500 |
+
elif class_embed_type == "identity":
|
501 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
502 |
+
elif class_embed_type == "projection":
|
503 |
+
if projection_class_embeddings_input_dim is None:
|
504 |
+
raise ValueError(
|
505 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
506 |
+
)
|
507 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
508 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
509 |
+
# 2. it projects from an arbitrary input dimension.
|
510 |
+
#
|
511 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
512 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
513 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
514 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
515 |
+
elif class_embed_type == "simple_projection":
|
516 |
+
if projection_class_embeddings_input_dim is None:
|
517 |
+
raise ValueError(
|
518 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
519 |
+
)
|
520 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
521 |
+
else:
|
522 |
+
self.class_embedding = None
|
523 |
+
|
524 |
+
if addition_embed_type == "text":
|
525 |
+
if encoder_hid_dim is not None:
|
526 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
527 |
+
else:
|
528 |
+
text_time_embedding_from_dim = cross_attention_dim
|
529 |
+
|
530 |
+
self.add_embedding = TextTimeEmbedding(
|
531 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
532 |
+
)
|
533 |
+
elif addition_embed_type == "text_image":
|
534 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
535 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
536 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
537 |
+
self.add_embedding = TextImageTimeEmbedding(
|
538 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
539 |
+
)
|
540 |
+
elif addition_embed_type == "text_time":
|
541 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
542 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
543 |
+
elif addition_embed_type == "image":
|
544 |
+
# Kandinsky 2.2
|
545 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
546 |
+
elif addition_embed_type == "image_hint":
|
547 |
+
# Kandinsky 2.2 ControlNet
|
548 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
549 |
+
elif addition_embed_type is not None:
|
550 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
551 |
+
|
552 |
+
if time_embedding_act_fn is None:
|
553 |
+
self.time_embed_act = None
|
554 |
+
else:
|
555 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
556 |
+
|
557 |
+
self.down_blocks = nn.ModuleList([])
|
558 |
+
self.up_blocks = nn.ModuleList([])
|
559 |
+
|
560 |
+
if isinstance(only_cross_attention, bool):
|
561 |
+
if mid_block_only_cross_attention is None:
|
562 |
+
mid_block_only_cross_attention = only_cross_attention
|
563 |
+
|
564 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
565 |
+
|
566 |
+
if mid_block_only_cross_attention is None:
|
567 |
+
mid_block_only_cross_attention = False
|
568 |
+
|
569 |
+
if isinstance(num_attention_heads, int):
|
570 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
571 |
+
|
572 |
+
if isinstance(attention_head_dim, int):
|
573 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
574 |
+
|
575 |
+
if isinstance(cross_attention_dim, int):
|
576 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
577 |
+
|
578 |
+
if isinstance(layers_per_block, int):
|
579 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
580 |
+
|
581 |
+
if isinstance(transformer_layers_per_block, int):
|
582 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
583 |
+
if class_embeddings_concat:
|
584 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
585 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
586 |
+
# regular time embeddings
|
587 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
588 |
+
else:
|
589 |
+
blocks_time_embed_dim = time_embed_dim
|
590 |
+
|
591 |
+
# down
|
592 |
+
output_channel = block_out_channels[0]
|
593 |
+
for i, down_block_type in enumerate(down_block_types):
|
594 |
+
input_channel = output_channel
|
595 |
+
output_channel = block_out_channels[i]
|
596 |
+
is_final_block = i == len(block_out_channels) - 1
|
597 |
+
|
598 |
+
down_block = get_down_block(
|
599 |
+
down_block_type,
|
600 |
+
num_layers=layers_per_block[i],
|
601 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
602 |
+
in_channels=input_channel,
|
603 |
+
out_channels=output_channel,
|
604 |
+
temb_channels=blocks_time_embed_dim,
|
605 |
+
add_downsample=not is_final_block,
|
606 |
+
resnet_eps=norm_eps,
|
607 |
+
resnet_act_fn=act_fn,
|
608 |
+
resnet_groups=norm_num_groups,
|
609 |
+
cross_attention_dim=cross_attention_dim[i],
|
610 |
+
num_attention_heads=num_attention_heads[i],
|
611 |
+
downsample_padding=downsample_padding,
|
612 |
+
dual_cross_attention=dual_cross_attention,
|
613 |
+
use_linear_projection=use_linear_projection,
|
614 |
+
only_cross_attention=only_cross_attention[i],
|
615 |
+
upcast_attention=upcast_attention,
|
616 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
617 |
+
attention_type=attention_type,
|
618 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
619 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
620 |
+
cross_attention_norm=cross_attention_norm,
|
621 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
622 |
+
dropout=dropout,
|
623 |
+
)
|
624 |
+
self.down_blocks.append(down_block)
|
625 |
+
|
626 |
+
# mid
|
627 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
628 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
629 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
630 |
+
in_channels=block_out_channels[-1],
|
631 |
+
temb_channels=blocks_time_embed_dim,
|
632 |
+
dropout=dropout,
|
633 |
+
resnet_eps=norm_eps,
|
634 |
+
resnet_act_fn=act_fn,
|
635 |
+
output_scale_factor=mid_block_scale_factor,
|
636 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
637 |
+
cross_attention_dim=cross_attention_dim[-1],
|
638 |
+
num_attention_heads=num_attention_heads[-1],
|
639 |
+
resnet_groups=norm_num_groups,
|
640 |
+
dual_cross_attention=dual_cross_attention,
|
641 |
+
use_linear_projection=use_linear_projection,
|
642 |
+
upcast_attention=upcast_attention,
|
643 |
+
attention_type=attention_type,
|
644 |
+
)
|
645 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
646 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
647 |
+
in_channels=block_out_channels[-1],
|
648 |
+
temb_channels=blocks_time_embed_dim,
|
649 |
+
dropout=dropout,
|
650 |
+
resnet_eps=norm_eps,
|
651 |
+
resnet_act_fn=act_fn,
|
652 |
+
output_scale_factor=mid_block_scale_factor,
|
653 |
+
cross_attention_dim=cross_attention_dim[-1],
|
654 |
+
attention_head_dim=attention_head_dim[-1],
|
655 |
+
resnet_groups=norm_num_groups,
|
656 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
657 |
+
skip_time_act=resnet_skip_time_act,
|
658 |
+
only_cross_attention=mid_block_only_cross_attention,
|
659 |
+
cross_attention_norm=cross_attention_norm,
|
660 |
+
)
|
661 |
+
elif mid_block_type == "UNetMidBlock2D":
|
662 |
+
self.mid_block = UNetMidBlock2D(
|
663 |
+
in_channels=block_out_channels[-1],
|
664 |
+
temb_channels=blocks_time_embed_dim,
|
665 |
+
dropout=dropout,
|
666 |
+
num_layers=0,
|
667 |
+
resnet_eps=norm_eps,
|
668 |
+
resnet_act_fn=act_fn,
|
669 |
+
output_scale_factor=mid_block_scale_factor,
|
670 |
+
resnet_groups=norm_num_groups,
|
671 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
672 |
+
add_attention=False,
|
673 |
+
)
|
674 |
+
elif mid_block_type is None:
|
675 |
+
self.mid_block = None
|
676 |
+
else:
|
677 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
678 |
+
|
679 |
+
# count how many layers upsample the images
|
680 |
+
self.num_upsamplers = 0
|
681 |
+
|
682 |
+
# up
|
683 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
684 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
685 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
686 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
687 |
+
reversed_transformer_layers_per_block = (
|
688 |
+
list(reversed(transformer_layers_per_block))
|
689 |
+
if reverse_transformer_layers_per_block is None
|
690 |
+
else reverse_transformer_layers_per_block
|
691 |
+
)
|
692 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
693 |
+
|
694 |
+
output_channel = reversed_block_out_channels[0]
|
695 |
+
for i, up_block_type in enumerate(up_block_types):
|
696 |
+
is_final_block = i == len(block_out_channels) - 1
|
697 |
+
|
698 |
+
prev_output_channel = output_channel
|
699 |
+
output_channel = reversed_block_out_channels[i]
|
700 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
701 |
+
|
702 |
+
# add upsample block for all BUT final layer
|
703 |
+
if not is_final_block:
|
704 |
+
add_upsample = True
|
705 |
+
self.num_upsamplers += 1
|
706 |
+
else:
|
707 |
+
add_upsample = False
|
708 |
+
up_block = get_up_block(
|
709 |
+
up_block_type,
|
710 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
711 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
712 |
+
in_channels=input_channel,
|
713 |
+
out_channels=output_channel,
|
714 |
+
prev_output_channel=prev_output_channel,
|
715 |
+
temb_channels=blocks_time_embed_dim,
|
716 |
+
add_upsample=add_upsample,
|
717 |
+
resnet_eps=norm_eps,
|
718 |
+
resnet_act_fn=act_fn,
|
719 |
+
resolution_idx=i,
|
720 |
+
resnet_groups=norm_num_groups,
|
721 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
722 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
723 |
+
dual_cross_attention=dual_cross_attention,
|
724 |
+
use_linear_projection=use_linear_projection,
|
725 |
+
only_cross_attention=only_cross_attention[i],
|
726 |
+
upcast_attention=upcast_attention,
|
727 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
728 |
+
attention_type=attention_type,
|
729 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
730 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
731 |
+
cross_attention_norm=cross_attention_norm,
|
732 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
733 |
+
dropout=dropout,
|
734 |
+
)
|
735 |
+
|
736 |
+
self.up_blocks.append(up_block)
|
737 |
+
prev_output_channel = output_channel
|
738 |
+
|
739 |
+
|
740 |
+
|
741 |
+
|
742 |
+
# out
|
743 |
+
if norm_num_groups is not None:
|
744 |
+
self.conv_norm_out = nn.GroupNorm(
|
745 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
746 |
+
)
|
747 |
+
|
748 |
+
self.conv_act = get_activation(act_fn)
|
749 |
+
|
750 |
+
else:
|
751 |
+
self.conv_norm_out = None
|
752 |
+
self.conv_act = None
|
753 |
+
|
754 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
755 |
+
self.conv_out = nn.Conv2d(
|
756 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
757 |
+
)
|
758 |
+
|
759 |
+
if attention_type in ["gated", "gated-text-image"]:
|
760 |
+
positive_len = 768
|
761 |
+
if isinstance(cross_attention_dim, int):
|
762 |
+
positive_len = cross_attention_dim
|
763 |
+
elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
|
764 |
+
positive_len = cross_attention_dim[0]
|
765 |
+
|
766 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
767 |
+
self.position_net = PositionNet(
|
768 |
+
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
769 |
+
)
|
770 |
+
|
771 |
+
|
772 |
+
|
773 |
+
from ip_adapter.attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor
|
774 |
+
|
775 |
+
attn_procs = {}
|
776 |
+
for name in self.attn_processors.keys():
|
777 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else self.config.cross_attention_dim
|
778 |
+
if name.startswith("mid_block"):
|
779 |
+
hidden_size = self.config.block_out_channels[-1]
|
780 |
+
elif name.startswith("up_blocks"):
|
781 |
+
block_id = int(name[len("up_blocks.")])
|
782 |
+
hidden_size = list(reversed(self.config.block_out_channels))[block_id]
|
783 |
+
elif name.startswith("down_blocks"):
|
784 |
+
block_id = int(name[len("down_blocks.")])
|
785 |
+
hidden_size = self.config.block_out_channels[block_id]
|
786 |
+
if cross_attention_dim is None:
|
787 |
+
attn_procs[name] = AttnProcessor()
|
788 |
+
else:
|
789 |
+
layer_name = name.split(".processor")[0]
|
790 |
+
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, num_tokens=16)
|
791 |
+
self.set_attn_processor(attn_procs)
|
792 |
+
|
793 |
+
|
794 |
+
@property
|
795 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
796 |
+
r"""
|
797 |
+
Returns:
|
798 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
799 |
+
indexed by its weight name.
|
800 |
+
"""
|
801 |
+
# set recursively
|
802 |
+
processors = {}
|
803 |
+
|
804 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
805 |
+
if hasattr(module, "get_processor"):
|
806 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
807 |
+
|
808 |
+
for sub_name, child in module.named_children():
|
809 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
810 |
+
|
811 |
+
return processors
|
812 |
+
|
813 |
+
for name, module in self.named_children():
|
814 |
+
fn_recursive_add_processors(name, module, processors)
|
815 |
+
|
816 |
+
return processors
|
817 |
+
|
818 |
+
def set_attn_processor(
|
819 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
820 |
+
):
|
821 |
+
r"""
|
822 |
+
Sets the attention processor to use to compute attention.
|
823 |
+
|
824 |
+
Parameters:
|
825 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
826 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
827 |
+
for **all** `Attention` layers.
|
828 |
+
|
829 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
830 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
831 |
+
|
832 |
+
"""
|
833 |
+
count = len(self.attn_processors.keys())
|
834 |
+
|
835 |
+
if isinstance(processor, dict) and len(processor) != count:
|
836 |
+
raise ValueError(
|
837 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
838 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
839 |
+
)
|
840 |
+
|
841 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
842 |
+
if hasattr(module, "set_processor"):
|
843 |
+
if not isinstance(processor, dict):
|
844 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
845 |
+
else:
|
846 |
+
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
847 |
+
|
848 |
+
for sub_name, child in module.named_children():
|
849 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
850 |
+
|
851 |
+
for name, module in self.named_children():
|
852 |
+
fn_recursive_attn_processor(name, module, processor)
|
853 |
+
|
854 |
+
def set_default_attn_processor(self):
|
855 |
+
"""
|
856 |
+
Disables custom attention processors and sets the default attention implementation.
|
857 |
+
"""
|
858 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
859 |
+
processor = AttnAddedKVProcessor()
|
860 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
861 |
+
processor = AttnProcessor()
|
862 |
+
else:
|
863 |
+
raise ValueError(
|
864 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
865 |
+
)
|
866 |
+
|
867 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
868 |
+
|
869 |
+
def set_attention_slice(self, slice_size):
|
870 |
+
r"""
|
871 |
+
Enable sliced attention computation.
|
872 |
+
|
873 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
874 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
875 |
+
|
876 |
+
Args:
|
877 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
878 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
879 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
880 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
881 |
+
must be a multiple of `slice_size`.
|
882 |
+
"""
|
883 |
+
sliceable_head_dims = []
|
884 |
+
|
885 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
886 |
+
if hasattr(module, "set_attention_slice"):
|
887 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
888 |
+
|
889 |
+
for child in module.children():
|
890 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
891 |
+
|
892 |
+
# retrieve number of attention layers
|
893 |
+
for module in self.children():
|
894 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
895 |
+
|
896 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
897 |
+
|
898 |
+
if slice_size == "auto":
|
899 |
+
# half the attention head size is usually a good trade-off between
|
900 |
+
# speed and memory
|
901 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
902 |
+
elif slice_size == "max":
|
903 |
+
# make smallest slice possible
|
904 |
+
slice_size = num_sliceable_layers * [1]
|
905 |
+
|
906 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
907 |
+
|
908 |
+
if len(slice_size) != len(sliceable_head_dims):
|
909 |
+
raise ValueError(
|
910 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
911 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
912 |
+
)
|
913 |
+
|
914 |
+
for i in range(len(slice_size)):
|
915 |
+
size = slice_size[i]
|
916 |
+
dim = sliceable_head_dims[i]
|
917 |
+
if size is not None and size > dim:
|
918 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
919 |
+
|
920 |
+
# Recursively walk through all the children.
|
921 |
+
# Any children which exposes the set_attention_slice method
|
922 |
+
# gets the message
|
923 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
924 |
+
if hasattr(module, "set_attention_slice"):
|
925 |
+
module.set_attention_slice(slice_size.pop())
|
926 |
+
|
927 |
+
for child in module.children():
|
928 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
929 |
+
|
930 |
+
reversed_slice_size = list(reversed(slice_size))
|
931 |
+
for module in self.children():
|
932 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
933 |
+
|
934 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
935 |
+
if hasattr(module, "gradient_checkpointing"):
|
936 |
+
module.gradient_checkpointing = value
|
937 |
+
|
938 |
+
def enable_freeu(self, s1, s2, b1, b2):
|
939 |
+
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
940 |
+
|
941 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
942 |
+
|
943 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
944 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
945 |
+
|
946 |
+
Args:
|
947 |
+
s1 (`float`):
|
948 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
949 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
950 |
+
s2 (`float`):
|
951 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
952 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
953 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
954 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
955 |
+
"""
|
956 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
957 |
+
setattr(upsample_block, "s1", s1)
|
958 |
+
setattr(upsample_block, "s2", s2)
|
959 |
+
setattr(upsample_block, "b1", b1)
|
960 |
+
setattr(upsample_block, "b2", b2)
|
961 |
+
|
962 |
+
def disable_freeu(self):
|
963 |
+
"""Disables the FreeU mechanism."""
|
964 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
965 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
966 |
+
for k in freeu_keys:
|
967 |
+
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
|
968 |
+
setattr(upsample_block, k, None)
|
969 |
+
|
970 |
+
def fuse_qkv_projections(self):
|
971 |
+
"""
|
972 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
|
973 |
+
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
|
974 |
+
|
975 |
+
<Tip warning={true}>
|
976 |
+
|
977 |
+
This API is 🧪 experimental.
|
978 |
+
|
979 |
+
</Tip>
|
980 |
+
"""
|
981 |
+
self.original_attn_processors = None
|
982 |
+
|
983 |
+
for _, attn_processor in self.attn_processors.items():
|
984 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
985 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
986 |
+
|
987 |
+
self.original_attn_processors = self.attn_processors
|
988 |
+
|
989 |
+
for module in self.modules():
|
990 |
+
if isinstance(module, Attention):
|
991 |
+
module.fuse_projections(fuse=True)
|
992 |
+
|
993 |
+
def unfuse_qkv_projections(self):
|
994 |
+
"""Disables the fused QKV projection if enabled.
|
995 |
+
|
996 |
+
<Tip warning={true}>
|
997 |
+
|
998 |
+
This API is 🧪 experimental.
|
999 |
+
|
1000 |
+
</Tip>
|
1001 |
+
|
1002 |
+
"""
|
1003 |
+
if self.original_attn_processors is not None:
|
1004 |
+
self.set_attn_processor(self.original_attn_processors)
|
1005 |
+
|
1006 |
+
def forward(
|
1007 |
+
self,
|
1008 |
+
sample: torch.FloatTensor,
|
1009 |
+
timestep: Union[torch.Tensor, float, int],
|
1010 |
+
encoder_hidden_states: torch.Tensor,
|
1011 |
+
class_labels: Optional[torch.Tensor] = None,
|
1012 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
1013 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1014 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1015 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
1016 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1017 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
1018 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1019 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1020 |
+
return_dict: bool = True,
|
1021 |
+
garment_features: Optional[Tuple[torch.Tensor]] = None,
|
1022 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
1023 |
+
r"""
|
1024 |
+
The [`UNet2DConditionModel`] forward method.
|
1025 |
+
|
1026 |
+
Args:
|
1027 |
+
sample (`torch.FloatTensor`):
|
1028 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
1029 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
1030 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
1031 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
1032 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
1033 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
1034 |
+
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
1035 |
+
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
1036 |
+
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
1037 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
1038 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
1039 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
1040 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
1041 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1042 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1043 |
+
`self.processor` in
|
1044 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1045 |
+
added_cond_kwargs: (`dict`, *optional*):
|
1046 |
+
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
1047 |
+
are passed along to the UNet blocks.
|
1048 |
+
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
1049 |
+
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
1050 |
+
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
1051 |
+
A tensor that if specified is added to the residual of the middle unet block.
|
1052 |
+
encoder_attention_mask (`torch.Tensor`):
|
1053 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
1054 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
1055 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
1056 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1057 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
1058 |
+
tuple.
|
1059 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1060 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
1061 |
+
added_cond_kwargs: (`dict`, *optional*):
|
1062 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
1063 |
+
are passed along to the UNet blocks.
|
1064 |
+
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
1065 |
+
additional residuals to be added to UNet long skip connections from down blocks to up blocks for
|
1066 |
+
example from ControlNet side model(s)
|
1067 |
+
mid_block_additional_residual (`torch.Tensor`, *optional*):
|
1068 |
+
additional residual to be added to UNet mid block output, for example from ControlNet side model
|
1069 |
+
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
1070 |
+
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
1071 |
+
|
1072 |
+
Returns:
|
1073 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
1074 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
1075 |
+
a `tuple` is returned where the first element is the sample tensor.
|
1076 |
+
"""
|
1077 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
1078 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
1079 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
1080 |
+
# on the fly if necessary.
|
1081 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
1082 |
+
|
1083 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
1084 |
+
forward_upsample_size = False
|
1085 |
+
upsample_size = None
|
1086 |
+
|
1087 |
+
for dim in sample.shape[-2:]:
|
1088 |
+
if dim % default_overall_up_factor != 0:
|
1089 |
+
# Forward upsample size to force interpolation output size.
|
1090 |
+
forward_upsample_size = True
|
1091 |
+
break
|
1092 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
1093 |
+
# expects mask of shape:
|
1094 |
+
# [batch, key_tokens]
|
1095 |
+
# adds singleton query_tokens dimension:
|
1096 |
+
# [batch, 1, key_tokens]
|
1097 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
1098 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
1099 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
1100 |
+
if attention_mask is not None:
|
1101 |
+
# assume that mask is expressed as:
|
1102 |
+
# (1 = keep, 0 = discard)
|
1103 |
+
# convert mask into a bias that can be added to attention scores:
|
1104 |
+
# (keep = +0, discard = -10000.0)
|
1105 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
1106 |
+
attention_mask = attention_mask.unsqueeze(1)
|
1107 |
+
|
1108 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
1109 |
+
if encoder_attention_mask is not None:
|
1110 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
1111 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
1112 |
+
|
1113 |
+
# 0. center input if necessary
|
1114 |
+
if self.config.center_input_sample:
|
1115 |
+
sample = 2 * sample - 1.0
|
1116 |
+
|
1117 |
+
# 1. time
|
1118 |
+
timesteps = timestep
|
1119 |
+
if not torch.is_tensor(timesteps):
|
1120 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
1121 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
1122 |
+
is_mps = sample.device.type == "mps"
|
1123 |
+
if isinstance(timestep, float):
|
1124 |
+
dtype = torch.float32 if is_mps else torch.float64
|
1125 |
+
else:
|
1126 |
+
dtype = torch.int32 if is_mps else torch.int64
|
1127 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
1128 |
+
elif len(timesteps.shape) == 0:
|
1129 |
+
timesteps = timesteps[None].to(sample.device)
|
1130 |
+
|
1131 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1132 |
+
timesteps = timesteps.expand(sample.shape[0])
|
1133 |
+
|
1134 |
+
t_emb = self.time_proj(timesteps)
|
1135 |
+
|
1136 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1137 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
1138 |
+
# there might be better ways to encapsulate this.
|
1139 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
1140 |
+
|
1141 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
1142 |
+
aug_emb = None
|
1143 |
+
|
1144 |
+
if self.class_embedding is not None:
|
1145 |
+
if class_labels is None:
|
1146 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
1147 |
+
|
1148 |
+
if self.config.class_embed_type == "timestep":
|
1149 |
+
class_labels = self.time_proj(class_labels)
|
1150 |
+
|
1151 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1152 |
+
# there might be better ways to encapsulate this.
|
1153 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
1154 |
+
|
1155 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
1156 |
+
|
1157 |
+
if self.config.class_embeddings_concat:
|
1158 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
1159 |
+
else:
|
1160 |
+
emb = emb + class_emb
|
1161 |
+
|
1162 |
+
if self.config.addition_embed_type == "text":
|
1163 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
1164 |
+
elif self.config.addition_embed_type == "text_image":
|
1165 |
+
# Kandinsky 2.1 - style
|
1166 |
+
if "image_embeds" not in added_cond_kwargs:
|
1167 |
+
raise ValueError(
|
1168 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1169 |
+
)
|
1170 |
+
|
1171 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1172 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
1173 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
1174 |
+
elif self.config.addition_embed_type == "text_time":
|
1175 |
+
# SDXL - style
|
1176 |
+
if "text_embeds" not in added_cond_kwargs:
|
1177 |
+
raise ValueError(
|
1178 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
1179 |
+
)
|
1180 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
1181 |
+
if "time_ids" not in added_cond_kwargs:
|
1182 |
+
raise ValueError(
|
1183 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
1184 |
+
)
|
1185 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
1186 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
1187 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
1188 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
1189 |
+
add_embeds = add_embeds.to(emb.dtype)
|
1190 |
+
aug_emb = self.add_embedding(add_embeds)
|
1191 |
+
elif self.config.addition_embed_type == "image":
|
1192 |
+
# Kandinsky 2.2 - style
|
1193 |
+
if "image_embeds" not in added_cond_kwargs:
|
1194 |
+
raise ValueError(
|
1195 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1196 |
+
)
|
1197 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1198 |
+
aug_emb = self.add_embedding(image_embs)
|
1199 |
+
elif self.config.addition_embed_type == "image_hint":
|
1200 |
+
# Kandinsky 2.2 - style
|
1201 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
1202 |
+
raise ValueError(
|
1203 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1204 |
+
)
|
1205 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1206 |
+
hint = added_cond_kwargs.get("hint")
|
1207 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
1208 |
+
sample = torch.cat([sample, hint], dim=1)
|
1209 |
+
|
1210 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
1211 |
+
|
1212 |
+
if self.time_embed_act is not None:
|
1213 |
+
emb = self.time_embed_act(emb)
|
1214 |
+
|
1215 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1216 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1217 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1218 |
+
# Kadinsky 2.1 - style
|
1219 |
+
if "image_embeds" not in added_cond_kwargs:
|
1220 |
+
raise ValueError(
|
1221 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1222 |
+
)
|
1223 |
+
|
1224 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1225 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1226 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1227 |
+
# Kandinsky 2.2 - style
|
1228 |
+
if "image_embeds" not in added_cond_kwargs:
|
1229 |
+
raise ValueError(
|
1230 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1231 |
+
)
|
1232 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1233 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1234 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
|
1235 |
+
if "image_embeds" not in added_cond_kwargs:
|
1236 |
+
raise ValueError(
|
1237 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1238 |
+
)
|
1239 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1240 |
+
# print(image_embeds.shape)
|
1241 |
+
# image_embeds = self.encoder_hid_proj(image_embeds).to(encoder_hidden_states.dtype)
|
1242 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states, image_embeds], dim=1)
|
1243 |
+
|
1244 |
+
# 2. pre-process
|
1245 |
+
sample = self.conv_in(sample)
|
1246 |
+
|
1247 |
+
# 2.5 GLIGEN position net
|
1248 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
1249 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1250 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
1251 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
1252 |
+
|
1253 |
+
|
1254 |
+
curr_garment_feat_idx = 0
|
1255 |
+
|
1256 |
+
|
1257 |
+
# 3. down
|
1258 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
1259 |
+
if USE_PEFT_BACKEND:
|
1260 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1261 |
+
scale_lora_layers(self, lora_scale)
|
1262 |
+
|
1263 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1264 |
+
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
1265 |
+
is_adapter = down_intrablock_additional_residuals is not None
|
1266 |
+
# maintain backward compatibility for legacy usage, where
|
1267 |
+
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
1268 |
+
# but can only use one or the other
|
1269 |
+
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
1270 |
+
deprecate(
|
1271 |
+
"T2I should not use down_block_additional_residuals",
|
1272 |
+
"1.3.0",
|
1273 |
+
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
1274 |
+
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
1275 |
+
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
1276 |
+
standard_warn=False,
|
1277 |
+
)
|
1278 |
+
down_intrablock_additional_residuals = down_block_additional_residuals
|
1279 |
+
is_adapter = True
|
1280 |
+
|
1281 |
+
down_block_res_samples = (sample,)
|
1282 |
+
for downsample_block in self.down_blocks:
|
1283 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1284 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1285 |
+
additional_residuals = {}
|
1286 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1287 |
+
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
1288 |
+
|
1289 |
+
sample, res_samples,curr_garment_feat_idx = downsample_block(
|
1290 |
+
hidden_states=sample,
|
1291 |
+
temb=emb,
|
1292 |
+
encoder_hidden_states=encoder_hidden_states,
|
1293 |
+
attention_mask=attention_mask,
|
1294 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1295 |
+
encoder_attention_mask=encoder_attention_mask,
|
1296 |
+
garment_features=garment_features,
|
1297 |
+
curr_garment_feat_idx=curr_garment_feat_idx,
|
1298 |
+
**additional_residuals,
|
1299 |
+
)
|
1300 |
+
else:
|
1301 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
|
1302 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1303 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1304 |
+
|
1305 |
+
down_block_res_samples += res_samples
|
1306 |
+
|
1307 |
+
|
1308 |
+
if is_controlnet:
|
1309 |
+
new_down_block_res_samples = ()
|
1310 |
+
|
1311 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1312 |
+
down_block_res_samples, down_block_additional_residuals
|
1313 |
+
):
|
1314 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1315 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1316 |
+
|
1317 |
+
down_block_res_samples = new_down_block_res_samples
|
1318 |
+
|
1319 |
+
# 4. mid
|
1320 |
+
if self.mid_block is not None:
|
1321 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
1322 |
+
sample ,curr_garment_feat_idx= self.mid_block(
|
1323 |
+
sample,
|
1324 |
+
emb,
|
1325 |
+
encoder_hidden_states=encoder_hidden_states,
|
1326 |
+
attention_mask=attention_mask,
|
1327 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1328 |
+
encoder_attention_mask=encoder_attention_mask,
|
1329 |
+
garment_features=garment_features,
|
1330 |
+
curr_garment_feat_idx=curr_garment_feat_idx,
|
1331 |
+
)
|
1332 |
+
else:
|
1333 |
+
sample = self.mid_block(sample, emb)
|
1334 |
+
|
1335 |
+
# To support T2I-Adapter-XL
|
1336 |
+
if (
|
1337 |
+
is_adapter
|
1338 |
+
and len(down_intrablock_additional_residuals) > 0
|
1339 |
+
and sample.shape == down_intrablock_additional_residuals[0].shape
|
1340 |
+
):
|
1341 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1342 |
+
|
1343 |
+
if is_controlnet:
|
1344 |
+
sample = sample + mid_block_additional_residual
|
1345 |
+
|
1346 |
+
|
1347 |
+
|
1348 |
+
# 5. up
|
1349 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1350 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1351 |
+
|
1352 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1353 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1354 |
+
|
1355 |
+
# if we have not reached the final block and need to forward the
|
1356 |
+
# upsample size, we do it here
|
1357 |
+
if not is_final_block and forward_upsample_size:
|
1358 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1359 |
+
|
1360 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1361 |
+
sample ,curr_garment_feat_idx= upsample_block(
|
1362 |
+
hidden_states=sample,
|
1363 |
+
temb=emb,
|
1364 |
+
res_hidden_states_tuple=res_samples,
|
1365 |
+
encoder_hidden_states=encoder_hidden_states,
|
1366 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1367 |
+
upsample_size=upsample_size,
|
1368 |
+
attention_mask=attention_mask,
|
1369 |
+
encoder_attention_mask=encoder_attention_mask,
|
1370 |
+
garment_features=garment_features,
|
1371 |
+
curr_garment_feat_idx=curr_garment_feat_idx,
|
1372 |
+
)
|
1373 |
+
|
1374 |
+
else:
|
1375 |
+
sample = upsample_block(
|
1376 |
+
hidden_states=sample,
|
1377 |
+
temb=emb,
|
1378 |
+
res_hidden_states_tuple=res_samples,
|
1379 |
+
upsample_size=upsample_size,
|
1380 |
+
scale=lora_scale,
|
1381 |
+
)
|
1382 |
+
# 6. post-process
|
1383 |
+
if self.conv_norm_out:
|
1384 |
+
sample = self.conv_norm_out(sample)
|
1385 |
+
sample = self.conv_act(sample)
|
1386 |
+
sample = self.conv_out(sample)
|
1387 |
+
|
1388 |
+
if USE_PEFT_BACKEND:
|
1389 |
+
# remove `lora_scale` from each PEFT layer
|
1390 |
+
unscale_lora_layers(self, lora_scale)
|
1391 |
+
|
1392 |
+
if not return_dict:
|
1393 |
+
return (sample,)
|
1394 |
+
|
1395 |
+
return UNet2DConditionOutput(sample=sample)
|