from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("hamzab/roberta-fake-news-classification") model = AutoModelForSequenceClassification.from_pretrained("hamzab/roberta-fake-news-classification") import gradio as gr import torch def predict_fake(title,text): input_str = "" + title + "<content>" + text + "<end>" input_ids = tokenizer.encode_plus(input_str, max_length=512, padding="max_length", truncation=True, return_tensors="pt") device = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(device) with torch.no_grad(): output = model(input_ids["input_ids"].to(device), attention_mask=input_ids["attention_mask"].to(device)) return dict(zip(["Fake","Real"], [x.item() for x in list(torch.nn.Softmax()(output.logits)[0])] )) gr.Interface(fn=predict_fake, inputs=[gr.Textbox(lines=1,label="headline"), gr.Textbox(lines=6,label="content")], outputs=gr.Label()).launch(share=True)