Simon Dürr commited on
Commit
4060d6d
·
1 Parent(s): b9e3a1d

add leaderboard

Browse files
Files changed (3) hide show
  1. app.py +107 -0
  2. envs.py +25 -0
  3. leaderboard_data.json +1 -0
app.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from gradio_leaderboard import Leaderboard
3
+ from pathlib import Path
4
+ import pandas as pd
5
+
6
+ import os
7
+
8
+ import json
9
+
10
+ from envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
11
+
12
+
13
+ def submit(model_name, model_id, challenge, submission_id, architecture, license):
14
+
15
+ if model_name == "" or model_id == "" or challenge == "" or submission_id == "" or architecture == "" or license == "":
16
+ gr.Error("Please fill all the fields")
17
+ return
18
+ try:
19
+ user_name = ""
20
+ if "/" in model_id:
21
+ user_name = model_id.split("/")[0]
22
+ model_path = model_id.split("/")[1]
23
+
24
+ eval_entry = {
25
+ "model_name": model_name,
26
+ "model_id": model_id,
27
+ "challenge": challenge,
28
+ "submission_id": submission_id,
29
+ "architecture": architecture,
30
+ "license": license
31
+ }
32
+ OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
33
+ os.makedirs(OUT_DIR, exist_ok=True)
34
+ out_path = f"{OUT_DIR}/{user_name}_{model_path}.json"
35
+
36
+ with open(out_path, "w") as f:
37
+ f.write(json.dumps(eval_entry))
38
+
39
+ print("Uploading eval file")
40
+ API.upload_file(
41
+ path_or_fileobj=out_path,
42
+ path_in_repo=out_path.split("eval-queue/")[1],
43
+ repo_id=QUEUE_REPO,
44
+ repo_type="dataset",
45
+ commit_message=f"Add {model_name} to eval queue",
46
+ )
47
+ gr.Info("Successfully submitted", duration=10)
48
+ # Remove the local file
49
+ os.remove(out_path)
50
+ except:
51
+ gr.Error("Error submitting the model")
52
+
53
+
54
+
55
+
56
+
57
+ abs_path = Path(__file__).parent
58
+
59
+ # Any pandas-compatible data
60
+ df = pd.read_json(str(abs_path / "leaderboard_data.json"))
61
+
62
+ with gr.Blocks() as demo:
63
+ gr.Markdown("""
64
+ # MLSB 2024 Challenges
65
+ """)
66
+
67
+
68
+ with gr.Tab("🎖️ PINDER Leaderboard"):
69
+ gr.Markdown("""## PINDER Leaderboard
70
+ Evaluating Protein-Protein interaction prediction
71
+ """)
72
+ Leaderboard(
73
+ value=df,
74
+ select_columns=["Arch", "Model", "L_rms", "I_rms",
75
+ "F_nat", "DOCKQ", "CAPRI"],
76
+ search_columns=["model_name_for_query"],
77
+ hide_columns=["model_name_for_query",],
78
+ filter_columns=["Arch"],
79
+ )
80
+ with gr.Tab("🥇 PLINDER Leaderboard"):
81
+ gr.Markdown("""## PLINDER Leaderboard
82
+ Evaluating Protein-Ligand prediction
83
+ """)
84
+ Leaderboard(
85
+ value=df,
86
+ select_columns=["Arch", "Model", "L_rms", "I_rms",
87
+ "F_nat", "DOCKQ", "CAPRI"],
88
+ search_columns=["model_name_for_query"],
89
+ hide_columns=["model_name_for_query",],
90
+ filter_columns=["Arch"],
91
+ )
92
+ with gr.Tab("✉️ Submit"):
93
+ gr.Markdown("""## Submit your model
94
+ Submit your model to the leaderboard
95
+ """)
96
+ model_name = gr.Textbox(label="Model name")
97
+ model_id = gr.Textbox(label="username/space e.g mlsb/alphafold3")
98
+ challenge = gr.Radio(choices=["PINDER", "PLINDER"],label="Challenge")
99
+ submission_id = gr.Textbox(label="Submission ID on CMT")
100
+ architecture = gr.Dropdown(choices=["GNN", "CNN", "Physics-based", "Other"],label="Model architecture")
101
+ license = gr.Dropdown(choices=["mit", "apache-2.0", "gplv2", "gplv3", "lgpl", "mozilla", "bsd", "other"],label="License")
102
+ submit_btn = gr.Button("Submit")
103
+
104
+ submit_btn.click(submit, inputs=[model_name, model_id, challenge, submission_id, architecture, license], outputs=[])
105
+
106
+ if __name__ == "__main__":
107
+ demo.launch()
envs.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from huggingface_hub import HfApi
4
+
5
+ # Info to change for your repository
6
+ # ----------------------------------
7
+ TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
8
+
9
+ OWNER = "MLSB" # Change to your org - don't forget to create a results and request dataset, with the correct format!
10
+ # ----------------------------------
11
+
12
+ REPO_ID = f"{OWNER}/leaderboard2024"
13
+ QUEUE_REPO = f"{OWNER}/requests"
14
+ RESULTS_REPO = f"{OWNER}/results"
15
+
16
+ # If you setup a cache later, just change HF_HOME
17
+ CACHE_PATH=os.getenv("HF_HOME", ".")
18
+
19
+ # Local caches
20
+ EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
21
+ EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
22
+ EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
23
+ EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
24
+
25
+ API = HfApi(token=TOKEN)
leaderboard_data.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"Arch":{"0":"GNN"},"Model":{"0":"davidkim205/Rhea-72b-v0.5"},"L_rms":{"0":81.22},"I_rms":{"0":79.78},"F_nat":{"0":91.15},"DOCKQ":{"0":77.95},"CAPRI":{"0":74.5},"Runtime":{"0":"2 +-0.2"},"Hub License":{"0":"apache-2.0"},"#Params (B)":{"0":72.29},"Model sha":{"0":"fda5cf998a0f2d89b53b5fa490793e3e50bb8239"},"model_name_for_query":{"0":"davidkim205\/Rhea-72b-v0.5"}}