import gradio as gr from gradio_leaderboard import Leaderboard from pathlib import Path import pandas as pd import os import json from envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO def submit(model_name, model_id, challenge, submission_id, paper_link, architecture, license): if model_name == "" or model_id == "" or challenge == "" or architecture == "" or license == "": gr.Error("Please fill all the fields") return if submission_id == "" and paper_link =="": gr.Error("Provide either a link to a paper describing the method or a submission ID for the MLSB workshop.") return try: user_name = "" if "/" in model_id: user_name = model_id.split("/")[0] model_path = model_id.split("/")[1] eval_entry = { "model_name": model_name, "model_id": model_id, "challenge": challenge, "submission_id": submission_id, "architecture": architecture, "license": license } OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" os.makedirs(OUT_DIR, exist_ok=True) out_path = f"{OUT_DIR}/{user_name}_{model_path}.json" with open(out_path, "w") as f: f.write(json.dumps(eval_entry)) print("Uploading eval file") API.upload_file( path_or_fileobj=out_path, path_in_repo=out_path.split("eval-queue/")[1], repo_id=QUEUE_REPO, repo_type="dataset", commit_message=f"Add {model_name} to eval queue", ) gr.Info("Successfully submitted", duration=10) # Remove the local file os.remove(out_path) except: gr.Error("Error submitting the model") abs_path = Path(__file__).parent # Any pandas-compatible data df = pd.read_json(str(abs_path / "leaderboard_data.json")) with gr.Blocks() as demo: gr.Markdown(""" # MLSB 2024 Challenges """) with gr.Tab("🎖️ PINDER Leaderboard"): gr.Markdown("""## PINDER Leaderboard Evaluating Protein-Protein interaction prediction """) Leaderboard( value=df, select_columns=["Arch", "Model", "L_rms", "I_rms", "F_nat", "DOCKQ", "CAPRI"], search_columns=["model_name_for_query"], hide_columns=["model_name_for_query",], filter_columns=["Arch"], ) with gr.Tab("🥇 PLINDER Leaderboard"): gr.Markdown("""## PLINDER Leaderboard Evaluating Protein-Ligand prediction """) Leaderboard( value=df, select_columns=["Arch", "Model", "L_rms", "I_rms", "F_nat", "DOCKQ", "CAPRI"], search_columns=["model_name_for_query"], hide_columns=["model_name_for_query",], filter_columns=["Arch"], ) with gr.Tab("✉️ Submit"): gr.Markdown("""## Submit your model Submit your model to the leaderboard """) model_name = gr.Textbox(label="Model name") model_id = gr.Textbox(label="username/space e.g mlsb/alphafold3") challenge = gr.Radio(choices=["PINDER", "PLINDER"],label="Challenge") with gr.Row(): gr.Markdown("Either give a submission id if you submitted to the MLSB workshop or provide a link to the preprint/paper describing the method.") submission_id = gr.Textbox(label="Submission ID on CMT") paper_link = gr.Textbox(label="Preprint or Paper link") architecture = gr.Dropdown(choices=["GNN", "CNN", "Physics-based", "Other"],label="Model architecture") license = gr.Dropdown(choices=["mit", "apache-2.0", "gplv2", "gplv3", "lgpl", "mozilla", "bsd", "other"],label="License") submit_btn = gr.Button("Submit") submit_btn.click(submit, inputs=[model_name, model_id, challenge, submission_id, paper_link, architecture, license], outputs=[]) if __name__ == "__main__": demo.launch()