Spaces:
Sleeping
Sleeping
import time | |
import gradio as gr | |
from gradio_molecule3d import Molecule3D | |
def predict (input_sequence, input_ligand,input_msa, input_protein): | |
start_time = time.time() | |
# Do inference here | |
# return an output pdb file with the protein and ligand with resname LIG or UNK. | |
# also return any metrics you want to log, metrics will not be used for evaluation but might be useful for users | |
metrics = {"mean_plddt": 80, "binding_affinity": -2} | |
end_time = time.time() | |
run_time = end_time - start_time | |
return ["test_out.pdb", "test_docking_pose.sdf"], metrics, run_time | |
with gr.Blocks() as app: | |
gr.Markdown("# Template for inference") | |
gr.Markdown("Title, description, and other information about the model") | |
with gr.Row(): | |
input_sequence = gr.Textbox(lines=3, label="Input Protein sequence (FASTA)") | |
input_ligand = gr.Textbox(lines=3, label="Input ligand SMILES") | |
with gr.Row(): | |
input_msa = gr.File(label="Input Protein MSA (A3M)") | |
input_protein = gr.File(label="Input protein monomer") | |
# define any options here | |
# for automated inference the default options are used | |
# slider_option = gr.Slider(0,10, label="Slider Option") | |
# checkbox_option = gr.Checkbox(label="Checkbox Option") | |
# dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option") | |
btn = gr.Button("Run Inference") | |
gr.Examples( | |
[ | |
[ | |
"SVKSEYAEAAAVGQEAVAVFNTMKAAFQNGDKEAVAQYLARLASLYTRHEELLNRILEKARREGNKEAVTLMNEFTATFQTGKSIFNAMVAAFKNGDDDSFESYLQALEKVTAKGETLADQIAKAL:SVKSEYAEAAAVGQEAVAVFNTMKAAFQNGDKEAVAQYLARLASLYTRHEELLNRILEKARREGNKEAVTLMNEFTATFQTGKSIFNAMVAAFKNGDDDSFESYLQALEKVTAKGETLADQIAKAL", | |
"COc1ccc(cc1)n2c3c(c(n2)C(=O)N)CCN(C3=O)c4ccc(cc4)N5CCCCC5=O", | |
"test_out.pdb" | |
], | |
], | |
[input_sequence, input_ligand, input_protein], | |
) | |
reps = [ | |
{ | |
"model": 0, | |
"style": "cartoon", | |
"color": "whiteCarbon", | |
}, | |
{ | |
"model": 1, | |
"style": "stick", | |
"color": "greenCarbon", | |
} | |
] | |
out = Molecule3D(reps=reps) | |
metrics = gr.JSON(label="Metrics") | |
run_time = gr.Textbox(label="Runtime") | |
btn.click(predict, inputs=[input_sequence, input_ligand, input_msa, input_protein], outputs=[out,metrics, run_time]) | |
app.launch() | |