File size: 2,273 Bytes
f8a748e 7f48662 f8a748e 7f48662 f8a748e 7f48662 f8a748e 7f48662 f8a748e 7f48662 f8a748e 7f48662 f8a748e 7f48662 f8a748e 7f48662 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import gradio as gr
from PIL import Image
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '7'
from OmniGen import OmniGenPipeline
pipe = OmniGenPipeline.from_pretrained("shitao/tmp-preview")
# 示例处理函数:生成图像
def generate_image(text, img1, img2, img3, height, width, guidance_scale):
input_images = [img1, img2, img3]
# 去除 None
input_images = [img for img in input_images if img is not None]
if len(input_images) == 0:
input_images = None
output = pipe(
prompt=text,
input_images=input_images,
height=height,
width=width,
guidance_scale=guidance_scale,
img_guidance_scale=1.6,
separate_cfg_infer=True,
use_kv_cache=False
)
img = output[0]
return img
# Gradio 接口
with gr.Blocks() as demo:
gr.Markdown("## Text + Multiple Images to Image Generator")
with gr.Row():
with gr.Column():
# 文本输入框
prompt_input = gr.Textbox(label="Enter your prompt", placeholder="Type your prompt here...")
# 图片上传框
image_input_1 = gr.Image(label="<img><|image_1|></img>", type="filepath")
image_input_2 = gr.Image(label="<img><|image_2|></img>", type="filepath")
image_input_3 = gr.Image(label="<img><|image_3|></img>", type="filepath")
# 高度和宽度滑块
height_input = gr.Slider(label="Height", minimum=256, maximum=2048, value=1024, step=16)
width_input = gr.Slider(label="Width", minimum=256, maximum=2048, value=1024, step=16)
# 引导尺度输入
guidance_scale_input = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=3.0, step=0.1)
# 生成按钮
generate_button = gr.Button("Generate Image")
with gr.Column():
# 输出图像框
output_image = gr.Image(label="Output Image")
# 按钮点击事件
generate_button.click(
generate_image,
inputs=[prompt_input, image_input_1, image_input_2, image_input_3, height_input, width_input, guidance_scale_input],
outputs=output_image
)
# 启动应用
demo.launch() |