Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
3 |
+
|
4 |
+
# Load the T5 model and tokenizer for question generation
|
5 |
+
model_name = "valhalla/t5-small-qg-prepend"
|
6 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
7 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
8 |
+
|
9 |
+
def generate_questions(email_text):
|
10 |
+
# Prepend "generate questions: " to the input text
|
11 |
+
input_text = "generate questions: " + email_text
|
12 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
13 |
+
|
14 |
+
# Generate questions
|
15 |
+
outputs = model.generate(
|
16 |
+
input_ids=input_ids,
|
17 |
+
max_length=512,
|
18 |
+
num_beams=4,
|
19 |
+
early_stopping=True
|
20 |
+
)
|
21 |
+
|
22 |
+
# Decode the generated text
|
23 |
+
questions = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
24 |
+
return questions
|
25 |
+
|
26 |
+
# Create a Gradio interface
|
27 |
+
iface = gr.Interface(
|
28 |
+
fn=generate_questions,
|
29 |
+
inputs="textbox",
|
30 |
+
outputs="textbox",
|
31 |
+
title="Email Question Generator",
|
32 |
+
description="Input an email, and the AI will generate the biggest questions that probably need to be answered.",
|
33 |
+
)
|
34 |
+
|
35 |
+
# Launch the interface
|
36 |
+
iface.launch()
|