Spaces:
Running
Running
# app.py | |
import streamlit as st | |
import os | |
# Local imports | |
from embedding import load_embeddings | |
from vectorstore import load_or_build_vectorstore | |
from chain_setup import build_conversational_chain | |
def main(): | |
st.title("💬 المحادثة التفاعلية - ادارة البيانات و حماية البيانات الشخصية") | |
# Paths and constants | |
local_file = "Policies001.pdf" | |
index_folder = "faiss_index" | |
# Step 1: Load Embeddings | |
embeddings = load_embeddings() | |
# Step 2: Build or load VectorStore | |
vectorstore = load_or_build_vectorstore(local_file, index_folder, embeddings) | |
# Step 3: Build the Conversational Retrieval Chain | |
qa_chain = build_conversational_chain(vectorstore) | |
# Step 4: Session State for UI Chat | |
if "messages" not in st.session_state: | |
st.session_state["messages"] = [ | |
{"role": "assistant", "content": "👋 مرحبًا! اسألني أي شيء عن إدارة البيانات وحماية البيانات الشخصية"} | |
] | |
# Display existing messages | |
for msg in st.session_state["messages"]: | |
with st.chat_message(msg["role"]): | |
st.markdown(msg["content"]) | |
# Step 5: Chat Input | |
user_input = st.chat_input("Type your question...") | |
# Step 6: Process user input | |
if user_input: | |
# a) Display user message | |
st.session_state["messages"].append({"role": "user", "content": user_input}) | |
with st.chat_message("user"): | |
st.markdown(user_input) | |
# b) Run chain | |
response_dict = qa_chain({"question": user_input}) | |
answer = response_dict["answer"] | |
# c) Display assistant response | |
st.session_state["messages"].append({"role": "assistant", "content": answer}) | |
with st.chat_message("assistant"): | |
st.markdown(answer) | |
if __name__ == "__main__": | |
main() | |