Spaces:
Running
Running
Create vectorstore.py
Browse files- vectorstore.py +32 -0
vectorstore.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# vectorstore.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
from langchain_community.document_loaders import PyPDFLoader
|
5 |
+
from langchain_experimental.text_splitter import SemanticChunker
|
6 |
+
from langchain_community.vectorstores import FAISS
|
7 |
+
|
8 |
+
def load_or_build_vectorstore(local_file: str, index_folder: str, embeddings):
|
9 |
+
"""
|
10 |
+
Loads a local FAISS index if it exists; otherwise,
|
11 |
+
builds a new index from the specified PDF file.
|
12 |
+
"""
|
13 |
+
if os.path.exists(index_folder):
|
14 |
+
print("Loading existing FAISS index from disk...")
|
15 |
+
vectorstore = FAISS.load_local(index_folder, embeddings, allow_dangerous_deserialization=True)
|
16 |
+
else:
|
17 |
+
print("Building a new FAISS index...")
|
18 |
+
loader = PyPDFLoader(local_file)
|
19 |
+
documents = loader.load()
|
20 |
+
|
21 |
+
text_splitter = SemanticChunker(
|
22 |
+
embeddings=embeddings,
|
23 |
+
breakpoint_threshold_type='percentile',
|
24 |
+
breakpoint_threshold_amount=90
|
25 |
+
)
|
26 |
+
chunked_docs = text_splitter.split_documents(documents)
|
27 |
+
print(f"Document split into {len(chunked_docs)} chunks.")
|
28 |
+
|
29 |
+
vectorstore = FAISS.from_documents(chunked_docs, embeddings)
|
30 |
+
vectorstore.save_local(index_folder)
|
31 |
+
|
32 |
+
return vectorstore
|