MOHAMMED-N commited on
Commit
f352484
·
verified ·
1 Parent(s): 1fa5347

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +114 -0
app.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
4
+
5
+ # --- LANGCHAIN IMPORTS ---
6
+ from langchain_community.document_loaders import PyPDFLoader
7
+ from langchain_experimental.text_splitter import SemanticChunker
8
+ from langchain_huggingface import HuggingFaceEmbeddings
9
+ from langchain_community.vectorstores import FAISS
10
+ from langchain.memory import ConversationBufferMemory
11
+
12
+ # 1) SET UP PAGE
13
+ st.title("💬 المحادثة التفاعلية - إدارة البيانات وحماية البيانات الشخصية")
14
+ local_file = "Policies001.pdf"
15
+
16
+ index_folder = "faiss_index"
17
+
18
+ # Inject custom CSS for right-to-left text
19
+ st.markdown(
20
+ """
21
+ <style>
22
+ .rtl {
23
+ direction: rtl;
24
+ text-align: right;
25
+ }
26
+ </style>
27
+ """,
28
+ unsafe_allow_html=True
29
+ )
30
+
31
+ # 2) LOAD OR BUILD VECTORSTORE
32
+ embeddings = HuggingFaceEmbeddings(
33
+ model_name="CAMeL-Lab/bert-base-arabic-camelbert-mix",
34
+ model_kwargs={"trust_remote_code": True}
35
+ )
36
+
37
+ if os.path.exists(index_folder):
38
+ vectorstore = FAISS.load_local(index_folder, embeddings, allow_dangerous_deserialization=True)
39
+ else:
40
+ loader = PyPDFLoader(local_file)
41
+ documents = loader.load()
42
+
43
+ text_splitter = SemanticChunker(
44
+ embeddings=embeddings,
45
+ breakpoint_threshold_type='percentile',
46
+ breakpoint_threshold_amount=90
47
+ )
48
+ chunked_docs = text_splitter.split_documents(documents)
49
+
50
+ vectorstore = FAISS.from_documents(chunked_docs, embeddings)
51
+ vectorstore.save_local(index_folder)
52
+
53
+ # 3) CREATE RETRIEVER
54
+ retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5})
55
+
56
+ # 4) SET UP "COMMAND-R7B-ARABIC" AS LLM
57
+ # Authenticate and load the model
58
+ model_name = "CohereForAI/c4ai-command-r7b-arabic-02-2025" # Replace with the actual Hugging Face model ID
59
+
60
+ # Set Hugging Face token securely
61
+ hf_token = os.getenv("HF_TOKEN") # Ensure you set your token as an environment variable in Hugging Face Spaces
62
+
63
+ if hf_token is None:
64
+ st.error("Hugging Face token not found. Please set the 'HF_TOKEN' environment variable.")
65
+ st.stop()
66
+
67
+ # Load tokenizer and model using the token
68
+ tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
69
+ model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token)
70
+
71
+ # Hugging Face pipeline for text generation
72
+ qa_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
73
+
74
+ # Memory object to store conversation
75
+ memory = ConversationBufferMemory(
76
+ memory_key="chat_history", # key used internally by the chain
77
+ return_messages=True # ensures we get the entire message history
78
+ )
79
+
80
+ # 5) MANAGE SESSION STATE FOR UI CHAT
81
+ if "messages" not in st.session_state:
82
+ st.session_state["messages"] = [
83
+ {"role": "assistant", "content": "👋 مرحبًا! اسألني أي شيء عن إدارة البيانات وحماية البيانات الشخصية!"}
84
+ ]
85
+
86
+ # Display existing messages in chat format
87
+ for msg in st.session_state["messages"]:
88
+ with st.chat_message(msg["role"]):
89
+ # Apply the "rtl" class to style Arabic text correctly
90
+ st.markdown(f'<div class="rtl">{msg["content"]}</div>', unsafe_allow_html=True)
91
+
92
+ # 6) CHAT INPUT
93
+ user_input = st.chat_input("اكتب سؤالك هنا")
94
+
95
+ # 7) PROCESS NEW USER MESSAGE
96
+ if user_input:
97
+ # a) Display user message in UI
98
+ st.session_state["messages"].append({"role": "user", "content": user_input})
99
+ with st.chat_message("user"):
100
+ st.markdown(f'<div class="rtl">{user_input}</div>', unsafe_allow_html=True)
101
+
102
+ # b) Run pipeline to generate a response
103
+ # Combine retriever results and user input for context-aware answering
104
+ retrieved_docs = retriever.get_relevant_documents(user_input)
105
+ context = "\n".join([doc.page_content for doc in retrieved_docs])
106
+ full_input = f"السياق:\n{context}\n\nالسؤال:\n{user_input}"
107
+
108
+ # Generate answer using the pipeline
109
+ response = qa_pipeline(full_input, max_length=500, num_return_sequences=1)[0]["generated_text"]
110
+
111
+ # c) Display assistant response
112
+ st.session_state["messages"].append({"role": "assistant", "content": response})
113
+ with st.chat_message("assistant"):
114
+ st.markdown(f'<div class="rtl">{response}</div>', unsafe_allow_html=True)