NDMO_Assistant / chain_setup.py
MOHAMMED-N's picture
Update chain_setup.py
9215965 verified
import os
from huggingface_hub import hf_hub_download
from langchain.llms import LlamaCpp
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
def load_llm():
"""
Downloads the Q4_K_M GGUF model from mobeidat's Hugging Face repository and loads it via llama-cpp.
"""
# 1) Download the GGUF model from Hugging Face
model_file = hf_hub_download(
repo_id="bartowski/ALLaM-AI_ALLaM-7B-Instruct-preview-GGUF",
filename="ALLaM-AI_ALLaM-7B-Instruct-preview-Q4_K_M.gguf",
local_dir="./models",
local_dir_use_symlinks=False
)
# 2) Load the model with llama-cpp via LangChain’s LlamaCpp
llm = LlamaCpp(
model_path=model_file,
flash_attn=False,
n_ctx=2048, # or 4096 depending on your needs
n_batch=512, # or even 256 depending on your hardware
chat_format='chatml'
)
return llm
def build_conversational_chain(vectorstore):
"""
Creates a ConversationalRetrievalChain using the local llama-cpp-based LLM
and a ConversationBufferMemory for multi-turn Q&A.
"""
llm = load_llm()
# We'll store chat history in memory so the chain can handle multi-turn conversations
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
)
qa_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5}),
memory=memory,
verbose=True
)
return qa_chain