Spaces:
Running
Running
Upload 6 files
Browse files- app.py +111 -0
- chain_setup.py +50 -0
- embedding.py +13 -0
- runtime.txt +1 -0
- streamlit_app.py +58 -0
- vectorstore.py +32 -0
app.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
4 |
+
from langchain_community.document_loaders import PyPDFLoader
|
5 |
+
from langchain_experimental.text_splitter import SemanticChunker
|
6 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
+
from langchain_community.vectorstores import FAISS
|
8 |
+
from langchain.memory import ConversationBufferMemory
|
9 |
+
|
10 |
+
# --- 1) إعداد الصفحة ---
|
11 |
+
st.title("💬 المحادثة التفاعلية - إدارة البيانات وحماية البيانات الشخصية")
|
12 |
+
local_file = "Policies001.pdf"
|
13 |
+
|
14 |
+
index_folder = "faiss_index"
|
15 |
+
|
16 |
+
# إضافة CSS مخصص لدعم النصوص من اليمين لليسار
|
17 |
+
st.markdown(
|
18 |
+
"""
|
19 |
+
<style>
|
20 |
+
.rtl {
|
21 |
+
direction: rtl;
|
22 |
+
text-align: right;
|
23 |
+
}
|
24 |
+
</style>
|
25 |
+
""",
|
26 |
+
unsafe_allow_html=True
|
27 |
+
)
|
28 |
+
|
29 |
+
# --- 2) تحميل أو بناء قاعدة بيانات FAISS ---
|
30 |
+
embeddings = HuggingFaceEmbeddings(
|
31 |
+
model_name="CAMeL-Lab/bert-base-arabic-camelbert-mix",
|
32 |
+
model_kwargs={"trust_remote_code": True}
|
33 |
+
)
|
34 |
+
|
35 |
+
if os.path.exists(index_folder):
|
36 |
+
# تحميل قاعدة البيانات إذا كانت موجودة
|
37 |
+
vectorstore = FAISS.load_local(index_folder, embeddings, allow_dangerous_deserialization=True)
|
38 |
+
else:
|
39 |
+
# تحميل PDF وتقسيم النصوص
|
40 |
+
loader = PyPDFLoader(local_file)
|
41 |
+
documents = loader.load()
|
42 |
+
|
43 |
+
text_splitter = SemanticChunker(
|
44 |
+
embeddings=embeddings,
|
45 |
+
breakpoint_threshold_type='percentile',
|
46 |
+
breakpoint_threshold_amount=90
|
47 |
+
)
|
48 |
+
chunked_docs = text_splitter.split_documents(documents)
|
49 |
+
|
50 |
+
# إنشاء قاعدة بيانات FAISS
|
51 |
+
vectorstore = FAISS.from_documents(chunked_docs, embeddings)
|
52 |
+
vectorstore.save_local(index_folder)
|
53 |
+
|
54 |
+
# --- 3) إعداد المسترجع ---
|
55 |
+
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
56 |
+
|
57 |
+
# --- 4) إعداد نموذج النص ---
|
58 |
+
model_name = "CohereForAI/c4ai-command-r7b-arabic-02-2025" # اسم النموذج
|
59 |
+
|
60 |
+
# التأكد من وجود توكن Hugging Face
|
61 |
+
hf_token = os.getenv("HF_TOKEN")
|
62 |
+
if hf_token is None:
|
63 |
+
st.error("Hugging Face token not found. Please set the 'HF_TOKEN' environment variable.")
|
64 |
+
st.stop()
|
65 |
+
|
66 |
+
# تحميل النموذج والمحول
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
|
68 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token)
|
69 |
+
|
70 |
+
# إعداد pipeline لتوليد النصوص
|
71 |
+
qa_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
|
72 |
+
|
73 |
+
# --- 5) إعداد الذاكرة ---
|
74 |
+
memory = ConversationBufferMemory(
|
75 |
+
memory_key="chat_history",
|
76 |
+
return_messages=True
|
77 |
+
)
|
78 |
+
|
79 |
+
# --- 6) إدارة رسائل المستخدم ---
|
80 |
+
if "messages" not in st.session_state:
|
81 |
+
st.session_state["messages"] = [
|
82 |
+
{"role": "assistant", "content": "👋 مرحبًا! اسألني أي شيء عن إدارة البيانات وحماية البيانات الشخصية!"}
|
83 |
+
]
|
84 |
+
|
85 |
+
# عرض الرسائل الحالية
|
86 |
+
for msg in st.session_state["messages"]:
|
87 |
+
with st.chat_message(msg["role"]):
|
88 |
+
st.markdown(f'<div class="rtl">{msg["content"]}</div>', unsafe_allow_html=True)
|
89 |
+
|
90 |
+
# --- 7) إدخال المستخدم ---
|
91 |
+
user_input = st.chat_input("اكتب سؤالك هنا")
|
92 |
+
|
93 |
+
# --- 8) معالجة رسالة المستخدم ---
|
94 |
+
if user_input:
|
95 |
+
# عرض رسالة المستخدم
|
96 |
+
st.session_state["messages"].append({"role": "user", "content": user_input})
|
97 |
+
with st.chat_message("user"):
|
98 |
+
st.markdown(f'<div class="rtl">{user_input}</div>', unsafe_allow_html=True)
|
99 |
+
|
100 |
+
# استرجاع المستندات ذات الصلة
|
101 |
+
retrieved_docs = retriever.get_relevant_documents(user_input)
|
102 |
+
context = "\n".join([doc.page_content for doc in retrieved_docs])
|
103 |
+
full_input = f"السياق:\n{context}\n\nالسؤال:\n{user_input}"
|
104 |
+
|
105 |
+
# توليد الإجابة باستخدام النموذج
|
106 |
+
response = qa_pipeline(full_input, max_length=500, num_return_sequences=1)[0]["generated_text"]
|
107 |
+
|
108 |
+
# عرض الإجابة
|
109 |
+
st.session_state["messages"].append({"role": "assistant", "content": response})
|
110 |
+
with st.chat_message("assistant"):
|
111 |
+
st.markdown(f'<div class="rtl">{response}</div>', unsafe_allow_html=True)
|
chain_setup.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from huggingface_hub import hf_hub_download
|
3 |
+
from langchain.llms import LlamaCpp
|
4 |
+
from langchain.chains import ConversationalRetrievalChain
|
5 |
+
from langchain.memory import ConversationBufferMemory
|
6 |
+
|
7 |
+
def load_llm():
|
8 |
+
"""
|
9 |
+
Downloads the Q4_K_M GGUF model from mobeidat's Hugging Face repository and loads it via llama-cpp.
|
10 |
+
"""
|
11 |
+
# 1) Download the GGUF model from Hugging Face
|
12 |
+
model_file = hf_hub_download(
|
13 |
+
repo_id="bartowski/c4ai-command-r7b-12-2024-GGUF",
|
14 |
+
filename="c4ai-command-r7b-12-2024-Q4_K_M.gguf",
|
15 |
+
local_dir="./models",
|
16 |
+
local_dir_use_symlinks=False
|
17 |
+
)
|
18 |
+
|
19 |
+
# 2) Load the model with llama-cpp via LangChain’s LlamaCpp
|
20 |
+
llm = LlamaCpp(
|
21 |
+
model_path=model_file,
|
22 |
+
flash_attn=False,
|
23 |
+
n_ctx=2048, # or 4096 depending on your needs
|
24 |
+
n_batch=512, # or even 256 depending on your hardware
|
25 |
+
chat_format='chatml'
|
26 |
+
)
|
27 |
+
|
28 |
+
return llm
|
29 |
+
|
30 |
+
def build_conversational_chain(vectorstore):
|
31 |
+
"""
|
32 |
+
Creates a ConversationalRetrievalChain using the local llama-cpp-based LLM
|
33 |
+
and a ConversationBufferMemory for multi-turn Q&A.
|
34 |
+
"""
|
35 |
+
llm = load_llm()
|
36 |
+
|
37 |
+
# We'll store chat history in memory so the chain can handle multi-turn conversations
|
38 |
+
memory = ConversationBufferMemory(
|
39 |
+
memory_key="chat_history",
|
40 |
+
return_messages=True
|
41 |
+
)
|
42 |
+
|
43 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
44 |
+
llm=llm,
|
45 |
+
retriever=vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5}),
|
46 |
+
memory=memory,
|
47 |
+
verbose=True
|
48 |
+
)
|
49 |
+
|
50 |
+
return qa_chain
|
embedding.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# embedding.py
|
2 |
+
|
3 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
4 |
+
|
5 |
+
def load_embeddings():
|
6 |
+
"""
|
7 |
+
Returns a HuggingFaceEmbeddings instance.
|
8 |
+
"""
|
9 |
+
embeddings = HuggingFaceEmbeddings(
|
10 |
+
model_name="CAMeL-Lab/bert-base-arabic-camelbert-mix",
|
11 |
+
model_kwargs={"trust_remote_code": True}
|
12 |
+
)
|
13 |
+
return embeddings
|
runtime.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python-3.12
|
streamlit_app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Local imports
|
7 |
+
from embedding import load_embeddings
|
8 |
+
from vectorstore import load_or_build_vectorstore
|
9 |
+
from chain_setup import build_conversational_chain
|
10 |
+
|
11 |
+
def main():
|
12 |
+
st.title("💬 المحادثة التفاعلية - ادارة البيانات و حماية البيانات الشخصية")
|
13 |
+
|
14 |
+
# Paths and constants
|
15 |
+
local_file = "Policies001.pdf"
|
16 |
+
index_folder = "faiss_index"
|
17 |
+
|
18 |
+
# Step 1: Load Embeddings
|
19 |
+
embeddings = load_embeddings()
|
20 |
+
|
21 |
+
# Step 2: Build or load VectorStore
|
22 |
+
vectorstore = load_or_build_vectorstore(local_file, index_folder, embeddings)
|
23 |
+
|
24 |
+
# Step 3: Build the Conversational Retrieval Chain
|
25 |
+
qa_chain = build_conversational_chain(vectorstore)
|
26 |
+
|
27 |
+
# Step 4: Session State for UI Chat
|
28 |
+
if "messages" not in st.session_state:
|
29 |
+
st.session_state["messages"] = [
|
30 |
+
{"role": "assistant", "content": "👋 مرحبًا! اسألني أي شيء عن إدارة البيانات وحماية البيانات الشخصية"}
|
31 |
+
]
|
32 |
+
|
33 |
+
# Display existing messages
|
34 |
+
for msg in st.session_state["messages"]:
|
35 |
+
with st.chat_message(msg["role"]):
|
36 |
+
st.markdown(msg["content"])
|
37 |
+
|
38 |
+
# Step 5: Chat Input
|
39 |
+
user_input = st.chat_input("Type your question...")
|
40 |
+
|
41 |
+
# Step 6: Process user input
|
42 |
+
if user_input:
|
43 |
+
# a) Display user message
|
44 |
+
st.session_state["messages"].append({"role": "user", "content": user_input})
|
45 |
+
with st.chat_message("user"):
|
46 |
+
st.markdown(user_input)
|
47 |
+
|
48 |
+
# b) Run chain
|
49 |
+
response_dict = qa_chain({"question": user_input})
|
50 |
+
answer = response_dict["answer"]
|
51 |
+
|
52 |
+
# c) Display assistant response
|
53 |
+
st.session_state["messages"].append({"role": "assistant", "content": answer})
|
54 |
+
with st.chat_message("assistant"):
|
55 |
+
st.markdown(answer)
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
main()
|
vectorstore.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# vectorstore.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
from langchain_community.document_loaders import PyPDFLoader
|
5 |
+
from langchain_experimental.text_splitter import SemanticChunker
|
6 |
+
from langchain_community.vectorstores import FAISS
|
7 |
+
|
8 |
+
def load_or_build_vectorstore(local_file: str, index_folder: str, embeddings):
|
9 |
+
"""
|
10 |
+
Loads a local FAISS index if it exists; otherwise,
|
11 |
+
builds a new index from the specified PDF file.
|
12 |
+
"""
|
13 |
+
if os.path.exists(index_folder):
|
14 |
+
print("Loading existing FAISS index from disk...")
|
15 |
+
vectorstore = FAISS.load_local(index_folder, embeddings, allow_dangerous_deserialization=True)
|
16 |
+
else:
|
17 |
+
print("Building a new FAISS index...")
|
18 |
+
loader = PyPDFLoader(local_file)
|
19 |
+
documents = loader.load()
|
20 |
+
|
21 |
+
text_splitter = SemanticChunker(
|
22 |
+
embeddings=embeddings,
|
23 |
+
breakpoint_threshold_type='percentile',
|
24 |
+
breakpoint_threshold_amount=90
|
25 |
+
)
|
26 |
+
chunked_docs = text_splitter.split_documents(documents)
|
27 |
+
print(f"Document split into {len(chunked_docs)} chunks.")
|
28 |
+
|
29 |
+
vectorstore = FAISS.from_documents(chunked_docs, embeddings)
|
30 |
+
vectorstore.save_local(index_folder)
|
31 |
+
|
32 |
+
return vectorstore
|