File size: 10,126 Bytes
cede853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f075328
cede853
f075328
cede853
f075328
cede853
3cbe9f8
f075328
cede853
 
efebdf7
cede853
 
3cbe9f8
cede853
 
 
bfaadf3
cede853
f919cf9
f075328
cede853
fefa547
cede853
 
 
24fc251
cede853
b9bbc30
cede853
c1fc42d
24fc251
cede853
 
 
 
 
 
 
 
ed4544a
 
cede853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144efcd
cede853
 
144efcd
cede853
 
144efcd
cede853
 
 
 
 
 
 
 
 
 
 
 
 
 
1517327
cede853
 
 
 
 
 
 
 
 
 
1517327
541c63a
e8bd60b
cede853
 
e8bd60b
 
 
cede853
e8bd60b
 
 
cede853
e8bd60b
 
 
cede853
e8bd60b
 
 
cede853
e8bd60b
 
 
cede853
e8bd60b
 
 
cede853
e8bd60b
 
 
cede853
e8bd60b
cede853
 
541c63a
 
cede853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
620bb03
 
 
cede853
 
 
 
 
1517327
cede853
1517327
cede853
b9bbc30
cede853
 
 
1517327
cede853
1517327
cede853
1517327
cede853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
620bb03
cede853
 
 
 
 
620bb03
cede853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
HF_TOKEN = os.getenv("HF_TOKEN")

import numpy as np
import pandas as pd
import sklearn
import sklearn.metrics
from math import sqrt
from scipy import stats as st
from matplotlib import pyplot as plt

from sklearn.utils import resample
from sklearn.calibration import CalibratedClassifierCV

import shap
import gradio as gr
import random
import re
import textwrap
from datasets import load_dataset


#Read data.

x1 = load_dataset("mertkarabacak/DMVO-mRS", data_files="gradio_data_x.csv", use_auth_token = HF_TOKEN)
x1 = pd.DataFrame(x1['train'])
x1 = x1.iloc[:, 1:]

print(x1.columns)
print(x1.shape)

#Define feature names.
f1_names = ['Age', 'Current or Former Smoker', 'Diabetes', 'History of Malignancy', 'Prior DVT or PE', 'Admission BMI', 'Admission NIHSS Score', 'Premorbid mRS Score', 'Occlusion Laterality', 'Hyperdense MCA', 'MT - Type of Thrombectomy', 'MT - mTICI Score', 'Hypertension', 'Antiplatelet Use', 'Admission Hemoglobin', 'Intravenous Thrombolysis']

#Prepare training data for the outcome 1.
y1 = x1.pop('OUTCOME')

#Training model.
from tabpfn import TabPFNClassifier
tabpfn = TabPFNClassifier(device='cuda', N_ensemble_configurations=8)

y1_calib_model = CalibratedClassifierCV(tabpfn, method='isotonic', cv=5)
y1_calib_model = y1_calib_model.fit(x1, y1)

y1_explainer = shap.Explainer(y1_calib_model.predict, x1)


output_y1 = (
    """
        <br/>
        <center><h3 style='font-size: 24px;'>The probability of 90-day mRS score of 3-6:</center>
        <br/>
        <center><h1 style='font-size: 36px;'>{}%</h1></center>
    """
)


#Define predict for y1.
def y1_predict(*args):
    df1 = pd.DataFrame([args], columns=x1.columns)
    pos_pred = y1_calib_model.predict_proba(df1)
    prob = pos_pred[0][1]
    prob_percent = round(prob * 100)  # Round to nearest whole number
    output = output_y1.format(prob_percent)
    return output


#Define function for wrapping feature labels.
def wrap_labels(ax, width, break_long_words=False):
    labels = []
    for label in ax.get_yticklabels():
        text = label.get_text()
        labels.append(textwrap.fill(text, width=width, break_long_words=break_long_words))
    ax.set_yticklabels(labels, rotation=0)
    

#Define interpret for y1.
def y1_interpret(*args):
    df1 = pd.DataFrame([args], columns=x1.columns)
    shap_values1 = y1_explainer(df1).values
    shap_values1 = np.abs(shap_values1)
    shap.bar_plot(shap_values1[0], max_display = 16, show = False, feature_names = f1_names)
    fig = plt.gcf()
    ax = plt.gca()
    wrap_labels(ax, 50)
    ax.figure
    plt.tight_layout()
    fig.set_figheight(9)
    fig.set_figwidth(9)
    plt.xlabel("SHAP value (impact on model output)", fontsize =12, fontweight = 'heavy', labelpad = 8)
    plt.tick_params(axis="y",direction="out", labelsize = 12)
    plt.tick_params(axis="x",direction="out", labelsize = 12)
    return fig


with gr.Blocks(title = "DMVO-mRS") as demo:
        
    gr.Markdown(
        """
    <br/>
    <center><h2>NOT FOR CLINICAL USE</h2><center>    
    <br/>    
    <center><h1>DMVO 90-Day mRS Score</h1></center>
    <center><h2>Prediction Tool</h2></center>
    <br/>
    <center><h3>This web application should not be used to guide any clinical decisions.</h3><center>
    <br/>
    <center><i>The publication describing the details of this prediction tool will be posted here upon the acceptance of publication.</i><center>
        """
    )

    gr.Markdown(
        """
        <center><h3>Model Performance</h3></center>
        <table style="margin-left: auto; margin-right: auto;">
        <tr>
            <th>Precision</th>
            <td>0.711 (0.634 - 0.765)</td>
        </tr>
        <tr>
            <th>Recall</th>
            <td>0.628 (0.553 - 0.694)</td>
        </tr>
        <tr>
            <th>F1 Score</th>
            <td>0.656 (0.585 - 0.708)</td>
        </tr>
        <tr>
            <th>Accuracy</th>
            <td>0.724 (0.696 - 0.752)</td>
        </tr>
        <tr>
            <th>Matthew's Correlation Coefficient</th>
            <td>0.450 (0.390 - 0.503)</td>
        </tr>
        <tr>
            <th>AUROC</th>
            <td>0.815 (0.790 - 0.841)</td>
        </tr>
        <tr>
            <th>AUPRC</th>
            <td>0.808 (0.781 - 0.832)</td>
        </tr>
        <tr>
            <th>Brier Score</th>
            <td>0.190 (0.177 - 0.202)</td>             
        </tr>
        </table>
        """
    )
   

    with gr.Row():

        with gr.Column():

            Age = gr.Slider(label="Age", minimum = 18, maximum = 99, step = 1, value = 55)

            Current_or_Former_Smoker = gr.Dropdown(label = "Current or Former Smoker", choices = ['No', 'Yes'], type = 'index', value = 'No')
            
            Diabetes = gr.Dropdown(label = "Diabetes", choices = ['No', 'Yes'], type = 'index', value = 'No')

            Hypertension = gr.Dropdown(label = "Hypertension", choices = ['No', 'Yes'], type = 'index', value = 'No')

            History_of_Malignancy = gr.Dropdown(label = "History of Malignancy", choices = ['No', 'Yes'], type = 'index', value = 'No')
            
            DVT_or_PE = gr.Dropdown(label = "Prior DVT or PE", choices = ['No', 'Yes'], type = 'index', value = 'No')

            Antiplatelet_Use = gr.Dropdown(label = "Antiplatelet Use", choices = ['No', 'Yes'], type = 'index', value = 'No')
            
            Admission_BMI = gr.Slider(label="Admission BMI", minimum = 15, maximum = 60, step = 0.1, value = 25)

            Admission_Hemoglobin = gr.Slider(label="Admission Hemoglobin", minimum = 5, maximum = 25, step = 0.1, value = 15)

            Admission_NIHSS = gr.Slider(label="Admission NIHSS Score", minimum = 0, maximum = 42, step = 1, value = 1)

            Premorbid_mRS = gr.Slider(label="Premorbid mRS Score", minimum = 0, maximum = 5, step = 1, value = 0)
                                      
            Occlusion_Laterality = gr.Dropdown(label = "Occlusion Laterality", choices = ['Left', 'Right'], type = 'index', value = 'Left')

            Hyperdense_MCA = gr.Dropdown(label = "Hyperdense MCA", choices = ['No', 'Yes'], type = 'index', value = 'No')

            IVTPA = gr.Dropdown(label = "Intravenous Thrombolysis", choices = ['No', 'Yes'], type = 'index', value = 'No')
            
            Type_of_Thrombectomy = gr.Dropdown(label = "MT - Type of Thrombectomy", choices = ['MT not attempted', 'Direct aspiration', 'Stent retriever', 'Combined'], type = 'index', value = 'Stent retriever')
            
            mTICI = gr.Dropdown(label = 'MT - mTICI Score', choices = ['MT not attempted' '0', '1', '2a', '2b', '2c', '3'], type = 'index', value = '3')
            
        with gr.Column():
            
            with gr.Box():
                
                with gr.Row():
                    y1_predict_btn = gr.Button(value="Predict")
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                label1 = gr.Markdown()
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                with gr.Row():
                    y1_interpret_btn = gr.Button(value="Explain")
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                plot1 = gr.Plot()
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                y1_predict_btn.click(
                    y1_predict,
                    inputs = [Age, Current_or_Former_Smoker, Diabetes, History_of_Malignancy, DVT_or_PE, Admission_BMI, Admission_NIHSS, Premorbid_mRS, Occlusion_Laterality, Hyperdense_MCA, Type_of_Thrombectomy, mTICI, Hypertension, Antiplatelet_Use, Admission_Hemoglobin, IVTPA],
                    outputs = [label1]
                )               

                y1_interpret_btn.click(
                    y1_interpret,
                    inputs = [Age, Current_or_Former_Smoker, Diabetes, History_of_Malignancy, DVT_or_PE, Admission_BMI, Admission_NIHSS, Premorbid_mRS, Occlusion_Laterality, Hyperdense_MCA, Type_of_Thrombectomy, mTICI, Hypertension, Antiplatelet_Use, Admission_Hemoglobin, IVTPA],
                    outputs = [plot1],
                )         
                
    gr.Markdown(
                """    
                <center><h2>Disclaimer</h2>
                <center> 
                This predictive tool, available on this webpage, is designed to provide general health information only and is not a substitute for professional medical advice, diagnosis, or treatment. It is strongly recommended that users consult with their own healthcare provider for any health-related concerns or issues. The authors make no warranties or representations, express or implied, regarding the accuracy, timeliness, relevance, or utility of the information contained in this tool. The health information in the prediction tool is subject to change and can be affected by various confounders, therefore it may be outdated, incomplete, or incorrect. No doctor-patient relationship is created by using this prediction tool and the authors have not validated its content. The authors do not record any specific user information or initiate contact with users. Before making any healthcare decisions or taking or refraining from any action based on the information in this prediction tool, it is advisable to seek professional advice from a healthcare provider. By using the prediction tool, users acknowledge and agree that neither the authors nor any other party will be liable for any decisions made, actions taken or not taken as a result of the information provided herein.
                <br/>
                <h4>By using this tool, you accept all of the above terms.<h4/>
                </center>
                """
    )                
                
demo.launch()