File size: 23,833 Bytes
cede853
 
 
 
 
 
 
 
 
 
 
5c077ff
cede853
73705f6
cede853
73705f6
cede853
 
 
 
 
 
 
 
 
f075328
73705f6
cede853
f075328
cede853
73705f6
 
 
cede853
73705f6
 
 
cede853
73705f6
 
3cbe9f8
cede853
73705f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f6076f
73705f6
 
 
 
 
 
 
 
1f6076f
73705f6
cede853
73705f6
 
 
 
 
 
1f6076f
73705f6
cede853
73705f6
 
fefa547
cede853
73705f6
 
 
 
cede853
73705f6
cede853
24fc251
cede853
73705f6
cede853
c1fc42d
24fc251
cede853
 
73705f6
 
 
 
 
 
 
 
cede853
73705f6
 
 
 
 
 
 
 
 
 
 
cede853
 
 
 
73705f6
ed4544a
cede853
 
73705f6
 
 
 
 
 
 
 
df2a8c9
3490bc2
73705f6
 
 
 
 
 
 
 
 
 
cede853
 
 
 
 
 
 
 
 
 
73705f6
cede853
 
 
 
73705f6
cede853
 
144efcd
cede853
 
144efcd
cede853
 
 
 
 
 
73705f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cede853
32d1d57
 
73705f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cede853
 
 
 
 
 
73705f6
cede853
 
 
 
 
 
 
 
 
 
1517327
541c63a
e8bd60b
73705f6
 
 
e8bd60b
 
 
73705f6
 
e8bd60b
 
73705f6
 
 
 
 
 
 
 
e8bd60b
 
73705f6
 
 
 
 
 
 
 
e8bd60b
73705f6
 
 
 
 
 
 
 
 
 
cede853
 
541c63a
 
cede853
 
 
 
 
73705f6
cede853
73705f6
 
410623f
cede853
6ba7f55
cede853
73705f6
cede853
73705f6
620bb03
4d94d38
 
 
cede853
73705f6
cede853
73705f6
 
 
cede853
73705f6
cede853
73705f6
cede853
73705f6
cede853
73705f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cede853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73705f6
cede853
 
 
 
 
73705f6
cede853
73705f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cede853
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import os
HF_TOKEN = os.getenv("HF_TOKEN")

import numpy as np
import pandas as pd
import sklearn
import sklearn.metrics
from math import sqrt
from scipy import stats as st
from matplotlib import pyplot as plt

from sklearn.model_selection import StratifiedKFold
from sklearn.utils import resample
from tabpfn import TabPFNClassifier
from sklearn.calibration import CalibratedClassifierCV
from imblearn.over_sampling import SMOTE

import shap
import gradio as gr
import random
import re
import textwrap
from datasets import load_dataset


#Read data.
x1 = load_dataset("mertkarabacak/NSQIP-ACC", data_files="gradio_los_data.csv", use_auth_token = HF_TOKEN)
x1 = pd.DataFrame(x1['train'])
x1 = x1.iloc[:, 1:]

x2 = load_dataset("mertkarabacak/NSQIP-ACC", data_files="gradio_discharge_data.csv", use_auth_token = HF_TOKEN)
x2 = pd.DataFrame(x2['train'])
x2 = x2.iloc[:, 1:]

x3 = load_dataset("mertkarabacak/NSQIP-ACC", data_files="gradio_complication_data.csv", use_auth_token = HF_TOKEN)
x3 = pd.DataFrame(x3['train'])
x3 = x3.iloc[:, 1:]


#Split predictors and the outcome.
y1 = x1.pop('OUTCOME')

y2 = x2.pop('OUTCOME')

y3 = x3.pop('OUTCOME')


#Define resampler and cv.
resampler = SMOTE(random_state = 0)
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=31)


#Train models.
for train_index, test_index in cv.split(x1, y1):
    x1_train_fold, x1_valid_fold = x1.iloc[train_index], x1.iloc[test_index]
    y1_train_fold, y1_valid_fold = y1.iloc[train_index], y1.iloc[test_index]
    x1_train_fold, y1_train_fold = resampler.fit_resample(x1_train_fold, y1_train_fold)
    y1_model = TabPFNClassifier(device='cuda', N_ensemble_configurations=8)
    y1_model.fit(x1_train_fold, y1_train_fold, overwrite_warning=True)
    y1_calib_model = CalibratedClassifierCV(y1_model, method='isotonic', cv='prefit')
    y1_calib_model.fit(x1_valid_fold, y1_valid_fold)

for train_index, test_index in cv.split(x2, y2):
    x2_train_fold, x2_valid_fold = x2.iloc[train_index], x2.iloc[test_index]
    y2_train_fold, y2_valid_fold = y2.iloc[train_index], y2.iloc[test_index]
    x2_train_fold, y2_train_fold = resampler.fit_resample(x2_train_fold, y2_train_fold)
    y2_model = TabPFNClassifier(device='cuda', N_ensemble_configurations=8)
    y2_model.fit(x2_train_fold, y2_train_fold, overwrite_warning=True)
    y2_calib_model = CalibratedClassifierCV(y2_model, method='isotonic', cv='prefit')
    y2_calib_model.fit(x2_valid_fold, y2_valid_fold)

for train_index, test_index in cv.split(x3, y3):
    x3_train_fold, x3_valid_fold = x3.iloc[train_index], x3.iloc[test_index]
    y3_train_fold, y3_valid_fold = y3.iloc[train_index], y3.iloc[test_index]
    x3_train_fold, y3_train_fold = resampler.fit_resample(x3_train_fold, y3_train_fold)
    y3_model = TabPFNClassifier(device='cuda', N_ensemble_configurations=8)
    y3_model.fit(x3_train_fold, y3_train_fold, overwrite_warning=True)
    y3_calib_model = CalibratedClassifierCV(y3_model, method='isotonic', cv='prefit')
    y3_calib_model.fit(x3_valid_fold, y3_valid_fold)


#Fit explainers.
y1_explainer = shap.Explainer(y1_calib_model.predict, x1)

y2_explainer = shap.Explainer(y2_calib_model.predict, x2)

y3_explainer = shap.Explainer(y3_calib_model.predict, x3)


#Define output functions.
output_y1 = (
    """
        <br/>
        <center><h3 style='font-size: 24px;'>The predicted probability of prolonged LOS:</center>
        <br/>
        <center><h1 style='font-size: 36px;'>{}%</h1></center>
    """
)

output_y2 = (
    """
        <br/>
        <center><h3 style='font-size: 24px;'>The predicted probability of non-home discharge:</center>
        <br/>
        <center><h1 style='font-size: 36px;'>{}%</h1></center>
    """
)

output_y3 = (
    """
        <br/>
        <center><h3 style='font-size: 24px;'>The predicted probability of major complications:</center>
        <br/>
        <center><h1 style='font-size: 36px;'>{}%</h1></center>
    """
)


#Define predict functions.
def y1_predict(*args):
    df1 = pd.DataFrame([args], columns=x1.columns)
    pos_pred = y1_calib_model.predict_proba(df1)
    prob = pos_pred[0][1]
    prob_percent = round(prob * 100)
    output = output_y1.format(prob_percent)
    return output

def y2_predict(*args):
    df2 = pd.DataFrame([args], columns=x2.columns)
    pos_pred = y2_calib_model.predict_proba(df2)
    prob = pos_pred[0][1]
    prob_percent = round(prob * 100)
    output = output_y2.format(prob_percent)
    return output

def y3_predict(*args):
    df3 = pd.DataFrame([args], columns=x3.columns)
    pos_pred = y3_calib_model.predict_proba(df3)
    prob = pos_pred[0][1]
    prob_percent = round(prob * 100)
    output = output_y3.format(prob_percent)
    return output


#Define feature names.
f_names = ['Sex', 'Race', 'Hispanic Ethnicity', 'Transfer Status', 'Surgical Specialty', 'Diabetes Mellitus', 'Dyspnea', 'History of Severe COPD', 'Congestive Heart Failure', 'Hypertension', 'Acute Renal Failure', 'Currently Requiring or on Dialysis', 'Disseminated Cancer', 'Steroid or Immunosuppressant for a Chronic Condition', 'Malnourishment', 'Bleeding Disorder', 'RBC Transfusion', 'Preoperative Serum Sodium', 'Preoperative Serum BUN', 'Preoperative Serum Creatinine', 'Preoperative WBC Count', 'Preoperative Hematocrit', 'Preoperative Platelet Count', 'ASA Physical Status', 'BMI', 'Single or Multiple Level Surgery']


#Define function for wrapping feature labels.
def wrap_labels(ax, width, break_long_words=False):
    labels = []
    for label in ax.get_yticklabels():
        text = label.get_text()
        labels.append(textwrap.fill(text, width=width, break_long_words=break_long_words))
    ax.set_yticklabels(labels, rotation=0)
    

#Define interpret functions
def y1_interpret(*args):
    df1 = pd.DataFrame([args], columns=x1.columns)
    shap_values1 = y1_explainer(df1).values
    shap_values1 = np.abs(shap_values1)
    shap.bar_plot(shap_values1[0], max_display = 10, show = False, feature_names = f_names)
    fig = plt.gcf()
    ax = plt.gca()
    wrap_labels(ax, 50)
    ax.figure
    plt.tight_layout()
    fig.set_figheight(9)
    fig.set_figwidth(9)
    plt.xlabel("SHAP value (impact on model output)", fontsize =12, fontweight = 'heavy', labelpad = 8)
    plt.tick_params(axis="y",direction="out", labelsize = 12)
    plt.tick_params(axis="x",direction="out", labelsize = 12)
    return fig

def y2_interpret(*args):
    df2 = pd.DataFrame([args], columns=x2.columns)
    shap_values1 = y2_explainer(df2).values
    shap_values1 = np.abs(shap_values2)
    shap.bar_plot(shap_values1[0], max_display = 10, show = False, feature_names = f_names)
    fig = plt.gcf()
    ax = plt.gca()
    wrap_labels(ax, 50)
    ax.figure
    plt.tight_layout()
    fig.set_figheight(9)
    fig.set_figwidth(9)
    plt.xlabel("SHAP value (impact on model output)", fontsize =12, fontweight = 'heavy', labelpad = 8)
    plt.tick_params(axis="y",direction="out", labelsize = 12)
    plt.tick_params(axis="x",direction="out", labelsize = 12)
    return fig

def y3_interpret(*args):
    df3 = pd.DataFrame([args], columns=x3.columns)
    shap_values3 = y3_explainer(df3).values
    shap_values3 = np.abs(shap_values3)
    shap.bar_plot(shap_values1[0], max_display = 10, show = False, feature_names = f_names)
    fig = plt.gcf()
    ax = plt.gca()
    wrap_labels(ax, 50)
    ax.figure
    plt.tight_layout()
    fig.set_figheight(9)
    fig.set_figwidth(9)
    plt.xlabel("SHAP value (impact on model output)", fontsize =12, fontweight = 'heavy', labelpad = 8)
    plt.tick_params(axis="y",direction="out", labelsize = 12)
    plt.tick_params(axis="x",direction="out", labelsize = 12)
    return fig


with gr.Blocks(title = "NSQIP-ACC") as demo:
        
    gr.Markdown(
        """
    <br/>
    <center><h2>NOT FOR CLINICAL USE</h2><center>    
    <br/>    
    <center><h1>Anterior Cervical Corpectomy Outcomes</h1></center>
    <center><h2>Prediction Tool</h2></center>
    <br/>
    <center><h3>This web application should not be used to guide any clinical decisions.</h3><center>
    <br/>
    <center><i>The publication describing the details of this prediction tool will be posted here upon the acceptance of publication.</i><center>
        """
    )

    gr.Markdown(
        """
        <center><h3>Model Performance</h3></center>
        <table style="margin-left: auto; margin-right: auto;">
        <tr>
            <th>Outcome</th>
            <th>Weighted Precision</th>
            <th>Weighted Recall</th>
            <th>F1 Score</th>
            <th>Accuracy</th>
            <th>AUROC</th>
            <th>AUPRC</th>
            <th>Brier Score</th>
        </tr>
        <tr>
            <td>Prolonged LOS</td>
            <td>0.822 (0.782 - 0.861)</td>
            <td>0.882 (0.876 - 0.888)</td>
            <td>0.178 (0.032 - 0.316)</td>            
            <td>0.882 (0.876 - 0.888)</td>
            <td>0.802 (0.770 - 0.433)</td>
            <td>0.437 (0.409 - 0.464)</td>
            <td>0.091 (0.089 - 0.093)</td>             
        </tr>
        <tr>
            <td>Non-home Discharges</td>
            <td>0.918 (0.900 - 0.937)</td>
            <td>0.946 (0.945 - 0.949)</td>
            <td>0.161 (0.053 - 0.275)</td>
            <td>0.946 (0.945 - 0.949)</td>
            <td>0.816 (0.775 - 0.857)</td>
            <td>0.392 (0.349 - 0.433)</td>
            <td>0.045 (0.042 - 0.049)</td>             
        </tr>
        <tr>
            <td>Major Complications</td>
            <td>0.944 (0.943 - 0.945)</td>
            <td>0.972 (0.971 - 0.973)</td>
            <td>0.144 (0.021 - 0.179)</td>            
            <td>0.972 (0.971 - 0.973)</td>
            <td>0.702 (0.610 - 0.754)</td>
            <td>0.214 (0.156 - 0.273)</td>
            <td>0.025 (0.024 - 0.026)</td>             
        </tr>        
        </table>
        """
    )
   

    with gr.Row():

        with gr.Column():

            Age = gr.Slider(label = "Age", minimum = 18, maximum = 99, step = 1, value = 55)

            Sex = gr.Dropdown(label = "Sex", choices = ['Male', 'Female'], type = 'index', value = 'Male')

            Race = gr.Dropdown(label = "Race", choices = ['White', 'Black', 'Asian', 'Other/Unknown'], type = 'index', value = 'White')

            Hispanic_Ethnicity = gr.Dropdown(label = "Hispanic Ethnicity", choices = ['No', 'Yes', 'Unknown'], type = 'index', value = 'No')

            BMI = gr.Slider(label = "BMI", minimum = 15, maximum = 60, step = 0.1, value = 25)            
            
            Transfer_Status = gr.Dropdown(label = "Transfer Status", choices = ['Not transferred', 'Transferred'], type = 'index', value = 'No')

            Diabetes_Mellitus_Requiring_Therapy = gr.Dropdown(label = "Diabetes", choices = ['No', 'Yes'], type = 'index', value = 'No')

            Dyspnea = gr.Dropdown(label = "Dyspnea", choices = ['No', 'Yes'], type = 'index', value = 'No')                        
            
            History_of_Severe_COPD = gr.Dropdown(label = "Severe COPD History", choices = ['No', 'Yes'], type = 'index', value = 'No')

            CHF_within_30_Days_Prior_to_Surgery = gr.Dropdown(label = "Congestive Heart Failure", choices = ['No', 'Yes'], type = 'index', value = 'No')
            
            Hypertension_Requiring_Medication = gr.Dropdown(label = "Hypertension", choices = ['No', 'Yes'], type = 'index', value = 'No')

            Acute_Renal_Failure = gr.Dropdown(label = "Acute Kidney Injury", choices = ['No', 'Yes'], type = 'index', value = 'No')

            Currently_Requiring_or_on_Dialysis = gr.Dropdown(label = "Currently Requiring or on Dialysis", choices = ['No', 'Yes'], type = 'index', value = 'No')

            Disseminated_Cancer = gr.Dropdown(label = "Disseminated Cancer", choices = ['No', 'Yes'], type = 'index', value = 'No')

            Steroid_or_Immunosuppressant_for_a_Chronic_Condition = gr.Dropdown(label = "Steroids or Immunosuppressants for a Chronic Disease", choices = ['No', 'Yes'], type = 'index', value = 'No')

            Malnourishment = gr.Dropdown(label = "> 10% Weight Loss Over 6 Months", choices = ['No', 'Yes'], type = 'index', value = 'No')

            Bleeding_Disorder = gr.Dropdown(label = "Bleeding Disorder", choices = ['No', 'Yes'], type = 'index', value = 'No')

            RBC_Transfusion_within_72_Hours_Prior_to_Surgery = gr.Dropdown(label = "Bleeding Disorder", choices = ['No', 'Yes'], type = 'index', value = 'No')

            Bleeding_Disorder = gr.Dropdown(label = "Bleeding Disorder", choices = ['No', 'Yes'], type = 'index', value = 'No')

            RBC_Transfusion_within_72_Hours_Prior_to_Surgery = gr.Dropdown(label = "≥1 Unit of RBC Transfusion in the 72 Hours Preceding Surgery", choices = ['No', 'Yes'], type = 'index', value = 'No')

            ASA_Classification = gr.Dropdown(label = "ASA Classification", choices = ['1', '2', '3'], type = 'index', value = '1')

            Functional_Status = gr.Dropdown(label = "Preoperative Functional Status", choices = ['Independent', 'Partially Dependent', 'Totally Dependent', 'Unknown'], type = 'index', value = 'Independent')

            Preoperative_Serum_Sodium = gr.Slider(label="Preoperative Serum Sodium", minimum = 120, maximum = 150, step = 1, value = 135)

            Preoperative_Serum_BUN = gr.Slider(label="Preoperative Serum BUN", minimum = 5, maximum = 50, step = 0.1, value = 15)

            Preoperative_Serum_Creatinine = gr.Slider(label="Preoperative Serum Creatinine", minimum = 0.3, maximum = 5, step = 0.1, value = 0.8)

            Preoperative_WBC_Count = gr.Slider(label="Preoperative WBC Count (x1000)", minimum = 1, maximum = 20, step = 0.1, value = 5)

            Preoperative_Hematocrit = gr.Slider(label="Preoperative Hematocrit", minimum = 20, maximum = 60, step = 1, value = 45)

            Preoperative_Platelet_Count = gr.Slider(label="Preoperative Platelet Count (x1000)", minimum = 50, maximum = 1000, step = 1, value = 150)
                                      
            Surgical_Specialty = gr.Dropdown(label = "Surgical Specialty", choices = ['Neurosurgery', 'Orthopedics'], type = 'index', value = 'Neurosurgery')

            Single_or_Multiple_Level_Surgery = gr.Dropdown(label = "Single- or Multiple-Level Surgery", choices = ['Single', 'Multiple'], type = 'index', value = 'Single')
            
        with gr.Column():
            
            with gr.Box():
                
                with gr.Row():
                    y1_predict_btn = gr.Button(value="Predict")
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                label1 = gr.Markdown()
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                with gr.Row():
                    y1_interpret_btn = gr.Button(value="Explain")
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                plot1 = gr.Plot()
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                y1_predict_btn.click(
                    y1_predict,
                    inputs = [Sex, Race, Hispanic_Ethnicity, Transfer_Status, Age, Surgical_Specialty, Diabetes_Mellitus_Requiring_Therapy, Dyspnea, Functional_Status, History_of_Severe_COPD, CHF_within_30_Days_Prior_to_Surgery, Hypertension_Requiring_Medication, Acute_Renal_Failure, Currently_Requiring_or_on_Dialysis, Disseminated_Cancer, Steroid_or_Immunosuppressant_for_a_Chronic_Condition, Malnourishment, Bleeding_Disorder, RBC_Transfusion_within_72_Hours_Prior_to_Surgery, Preoperative_Serum_Sodium, Preoperative_Serum_BUN, Preoperative_Serum_Creatinine, Preoperative_WBC_Count, Preoperative_Hematocrit, Preoperative_Platelet_Count, ASA_Classification, BMI, Single_or_Multiple_Level_Surgery],
                    outputs = [label1]
                )               

                y1_interpret_btn.click(
                    y1_interpret,
                    inputs = [Sex, Race, Hispanic_Ethnicity, Transfer_Status, Age, Surgical_Specialty, Diabetes_Mellitus_Requiring_Therapy, Dyspnea, Functional_Status, History_of_Severe_COPD, CHF_within_30_Days_Prior_to_Surgery, Hypertension_Requiring_Medication, Acute_Renal_Failure, Currently_Requiring_or_on_Dialysis, Disseminated_Cancer, Steroid_or_Immunosuppressant_for_a_Chronic_Condition, Malnourishment, Bleeding_Disorder, RBC_Transfusion_within_72_Hours_Prior_to_Surgery, Preoperative_Serum_Sodium, Preoperative_Serum_BUN, Preoperative_Serum_Creatinine, Preoperative_WBC_Count, Preoperative_Hematocrit, Preoperative_Platelet_Count, ASA_Classification, BMI, Single_or_Multiple_Level_Surgery],
                    outputs = [plot1],
                )

            with gr.Box():
                
                with gr.Row():
                    y2_predict_btn = gr.Button(value="Predict")
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                label2 = gr.Markdown()
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                with gr.Row():
                    y2_interpret_btn = gr.Button(value="Explain")
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                plot2 = gr.Plot()
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                y2_predict_btn.click(
                    y2_predict,
                    inputs = [Sex, Race, Hispanic_Ethnicity, Transfer_Status, Age, Surgical_Specialty, Diabetes_Mellitus_Requiring_Therapy, Dyspnea, Functional_Status, History_of_Severe_COPD, CHF_within_30_Days_Prior_to_Surgery, Hypertension_Requiring_Medication, Acute_Renal_Failure, Currently_Requiring_or_on_Dialysis, Disseminated_Cancer, Steroid_or_Immunosuppressant_for_a_Chronic_Condition, Malnourishment, Bleeding_Disorder, RBC_Transfusion_within_72_Hours_Prior_to_Surgery, Preoperative_Serum_Sodium, Preoperative_Serum_BUN, Preoperative_Serum_Creatinine, Preoperative_WBC_Count, Preoperative_Hematocrit, Preoperative_Platelet_Count, ASA_Classification, BMI, Single_or_Multiple_Level_Surgery],
                    outputs = [label2]
                )               

                y2_interpret_btn.click(
                    y2_interpret,
                    inputs = [Sex, Race, Hispanic_Ethnicity, Transfer_Status, Age, Surgical_Specialty, Diabetes_Mellitus_Requiring_Therapy, Dyspnea, Functional_Status, History_of_Severe_COPD, CHF_within_30_Days_Prior_to_Surgery, Hypertension_Requiring_Medication, Acute_Renal_Failure, Currently_Requiring_or_on_Dialysis, Disseminated_Cancer, Steroid_or_Immunosuppressant_for_a_Chronic_Condition, Malnourishment, Bleeding_Disorder, RBC_Transfusion_within_72_Hours_Prior_to_Surgery, Preoperative_Serum_Sodium, Preoperative_Serum_BUN, Preoperative_Serum_Creatinine, Preoperative_WBC_Count, Preoperative_Hematocrit, Preoperative_Platelet_Count, ASA_Classification, BMI, Single_or_Multiple_Level_Surgery],
                    outputs = [plot2],
                )

            with gr.Box():
                
                with gr.Row():
                    y3_predict_btn = gr.Button(value="Predict")
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                label3 = gr.Markdown()
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                with gr.Row():
                    y3_interpret_btn = gr.Button(value="Explain")
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                plot3 = gr.Plot()
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                y3_predict_btn.click(
                    y3_predict,
                    inputs = [Sex, Race, Hispanic_Ethnicity, Transfer_Status, Age, Surgical_Specialty, Diabetes_Mellitus_Requiring_Therapy, Dyspnea, Functional_Status, History_of_Severe_COPD, CHF_within_30_Days_Prior_to_Surgery, Hypertension_Requiring_Medication, Acute_Renal_Failure, Currently_Requiring_or_on_Dialysis, Disseminated_Cancer, Steroid_or_Immunosuppressant_for_a_Chronic_Condition, Malnourishment, Bleeding_Disorder, RBC_Transfusion_within_72_Hours_Prior_to_Surgery, Preoperative_Serum_Sodium, Preoperative_Serum_BUN, Preoperative_Serum_Creatinine, Preoperative_WBC_Count, Preoperative_Hematocrit, Preoperative_Platelet_Count, ASA_Classification, BMI, Single_or_Multiple_Level_Surgery],
                    outputs = [label3]
                )               

                y3_interpret_btn.click(
                    y3_interpret,
                    inputs = [Sex, Race, Hispanic_Ethnicity, Transfer_Status, Age, Surgical_Specialty, Diabetes_Mellitus_Requiring_Therapy, Dyspnea, Functional_Status, History_of_Severe_COPD, CHF_within_30_Days_Prior_to_Surgery, Hypertension_Requiring_Medication, Acute_Renal_Failure, Currently_Requiring_or_on_Dialysis, Disseminated_Cancer, Steroid_or_Immunosuppressant_for_a_Chronic_Condition, Malnourishment, Bleeding_Disorder, RBC_Transfusion_within_72_Hours_Prior_to_Surgery, Preoperative_Serum_Sodium, Preoperative_Serum_BUN, Preoperative_Serum_Creatinine, Preoperative_WBC_Count, Preoperative_Hematocrit, Preoperative_Platelet_Count, ASA_Classification, BMI, Single_or_Multiple_Level_Surgery],
                    outputs = [plot3],
                )
                
    gr.Markdown(
                """    
                <center><h2>Disclaimer</h2>
                <center> 
                This predictive tool, available on this webpage, is designed to provide general health information only and is not a substitute for professional medical advice, diagnosis, or treatment. It is strongly recommended that users consult with their own healthcare provider for any health-related concerns or issues. The authors make no warranties or representations, express or implied, regarding the accuracy, timeliness, relevance, or utility of the information contained in this tool. The health information in the prediction tool is subject to change and can be affected by various confounders, therefore it may be outdated, incomplete, or incorrect. No doctor-patient relationship is created by using this prediction tool and the authors have not validated its content. The authors do not record any specific user information or initiate contact with users. Before making any healthcare decisions or taking or refraining from any action based on the information in this prediction tool, it is advisable to seek professional advice from a healthcare provider. By using the prediction tool, users acknowledge and agree that neither the authors nor any other party will be liable for any decisions made, actions taken or not taken as a result of the information provided herein.
                <br/>
                <h4>By using this tool, you accept all of the above terms.<h4/>
                </center>
                """
    )                
                
demo.launch()