MSaadTariq
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import Owlv2Processor, Owlv2ForObjectDetection
|
4 |
+
import spaces
|
5 |
+
|
6 |
+
# Use GPU if available
|
7 |
+
if torch.cuda.is_available():
|
8 |
+
device = torch.device("cuda")
|
9 |
+
else:
|
10 |
+
device = torch.device("cpu")
|
11 |
+
|
12 |
+
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble").to(device)
|
13 |
+
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble")
|
14 |
+
|
15 |
+
def query_image(Upload_Image, Text, score_threshold):
|
16 |
+
Text = Text
|
17 |
+
Text = Text.split(",")
|
18 |
+
|
19 |
+
size = max(Upload_Image.shape[:2])
|
20 |
+
target_sizes = torch.Tensor([[size, size]])
|
21 |
+
inputs = processor(text=Text, images=Upload_Image, return_tensors="pt").to(device)
|
22 |
+
|
23 |
+
with torch.no_grad():
|
24 |
+
outputs = model(**inputs)
|
25 |
+
|
26 |
+
outputs.logits = outputs.logits.cpu()
|
27 |
+
outputs.pred_boxes = outputs.pred_boxes.cpu()
|
28 |
+
results = processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes)
|
29 |
+
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
|
30 |
+
|
31 |
+
result_labels = []
|
32 |
+
for box, score, label in zip(boxes, scores, labels):
|
33 |
+
box = [int(i) for i in box.tolist()]
|
34 |
+
if score < score_threshold:
|
35 |
+
continue
|
36 |
+
result_labels.append((box, Text[label.item()]))
|
37 |
+
return Upload_Image, result_labels
|
38 |
+
|
39 |
+
|
40 |
+
description = """
|
41 |
+
You can use AnyVision to query images with text descriptions of any object.
|
42 |
+
To use it, simply upload an image and enter comma separated text descriptions of objects you want to query the image for. You
|
43 |
+
can also use the score threshold slider to set a threshold to filter out low probability predictions.
|
44 |
+
|
45 |
+
You can get better predictions by querying the image with text templates used in training the original model: e.g. *"photo of a star-spangled banner"*,
|
46 |
+
*"image of a shoe"*.
|
47 |
+
"""
|
48 |
+
demo = gr.Interface(
|
49 |
+
query_image,
|
50 |
+
inputs=[gr.Image(), "text", gr.Slider(0, 1, value=0.1)],
|
51 |
+
outputs="annotatedimage",
|
52 |
+
title="AnyVision - Zero-Shot Object Detector with Owl2",
|
53 |
+
description=description
|
54 |
+
)
|
55 |
+
demo.launch()
|
56 |
+
|