import streamlit as st import numpy as np import pandas as pd from utils import PrepProcesor, columns import joblib model = joblib.load('xgbpipe.joblib') st.title('Will you survive if you were among Titanic passengers or not :ship:') # PassengerId,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked passengerid = st.text_input("Input Passenger ID", '8585') pclass = st.selectbox("Choose class", [1,2,3]) name = st.text_input("Input Passenger Name", 'Mohammad vesal Ahmadian') sex = st.selectbox( 'Chose your sex', pd.DataFrame({ 'did they Embark?':['Male', 'Female'] })) age = st.sidebar.slider( 'choose age', 0, 100 ) sibsp = st.slider("Choose siblings",0,10) parch = st.slider("Choose parch",0,10) ticket = st.text_input("Input Ticket Number", "8585") fare = st.number_input("Input Fare Price", 0,1000) cabin = st.text_input("Input Cabin", "C52") embarked = st.sidebar.selectbox( 'Did they Embark?', ('C', 'S', 'Q') ) def predict(): row = np.array([passengerid,pclass,name,sex,age,sibsp,parch,ticket,fare,cabin,embarked]) X = pd.DataFrame([row], columns = columns) prediction = model.predict(X) if prediction[0] == 1: st.success('Passenger Survived :thumbsup:') else: st.error('Passenger did not Survive :thumbsdown:') trigger = st.button('Predict', on_click=predict)