File size: 7,064 Bytes
f22d366
 
 
 
 
 
 
 
 
 
 
1379699
 
 
ddb4de0
 
 
 
 
 
 
 
02305ec
ddb4de0
 
 
 
 
fa8b4be
ddb4de0
8f472c2
ddb4de0
 
 
 
 
8f472c2
 
 
ddb4de0
8f472c2
 
a3bf837
8f472c2
 
5df1b32
 
8f472c2
5df1b32
 
ddb4de0
8f472c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5df1b32
8f472c2
5df1b32
8f472c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddb4de0
 
5df1b32
02305ec
 
5df1b32
 
ddb4de0
 
fa8b4be
007b414
5df1b32
 
 
1379699
5df1b32
1379699
fa8b4be
1379699
 
 
 
8f472c2
ddb4de0
 
1379699
 
ddb4de0
 
8f472c2
1379699
e65b35c
007b414
 
 
1379699
007b414
 
 
 
 
 
ddb4de0
 
fa8b4be
 
 
5df1b32
fa8b4be
5df1b32
fa8b4be
5df1b32
 
 
 
fa8b4be
5df1b32
 
 
ddb4de0
 
 
 
 
fa8b4be
ddb4de0
2b28532
ddb4de0
 
8f472c2
ddb4de0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import nltk
import ssl

try:
    _create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
    pass
else:
    ssl._create_default_https_context = _create_unverified_https_context
nltk.download("cmudict")

import os
import json
import random
import gradio as gr
import numpy as np
import torch
import re_matching
import utils
from infer import infer, latest_version, get_net_g
import gradio as gr
from config import config
from tools.webui import reload_javascript, get_character_html

device = config.webui_config.device
if device == "mps":
    os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"

def speak_fn(
        text: str,
        exceed_flag,
        speaker="TalkFlower_CNzh",
        sdp_ratio=0.2,      # SDP/DP混合比
        noise_scale=0.6,        # 感情
        noise_scale_w=0.6,      # 音素长度
        length_scale=0.9,       # 语速
        language="ZH",
        interval_between_para=0.2,      # 段间间隔
        interval_between_sent=1,        # 句间间隔
    ):
    while text.find("\n\n") != -1:
        text = text.replace("\n\n", "\n")
    if len(text) > 100:
        print(f"Too Long Text: {text}")
        if exceed_flag:
            text = "不要超过100字!"
            return gr.update(value="./assets/audios/nomorethan100.wav"), get_character_html(text), False, gr.update(interactive=True)
        else:
            text = "这句太长了,憋坏我啦!"
            return gr.update(value="./assets/audios/overlength.wav"), get_character_html(text), True, gr.update(interactive=True)
    audio_list = []
    if len(text) > 42:
        print(f"Long Text: {text}")
        para_list = re_matching.cut_para(text)
        for p in para_list:
            audio_list_sent = []
            sent_list = re_matching.cut_sent(p)
            for s in sent_list:
                audio = infer(
                    s,
                    sdp_ratio=sdp_ratio,
                    noise_scale=noise_scale,
                    noise_scale_w=noise_scale_w,
                    length_scale=length_scale,
                    sid=speaker,
                    language=language,
                    hps=hps,
                    net_g=net_g,
                    device=device,
                )
                audio_list_sent.append(audio)
                silence = np.zeros((int)(44100 * interval_between_sent))
                audio_list_sent.append(silence)
            if (interval_between_para - interval_between_sent) > 0:
                silence = np.zeros((int)(44100 * (interval_between_para - interval_between_sent)))
                audio_list_sent.append(silence)
            audio16bit = gr.processing_utils.convert_to_16_bit_wav(np.concatenate(audio_list_sent))  # 对完整句子做音量归一
            audio_list.append(audio16bit)
    else:
        print(f"Short Text: {text}")
        silence = np.zeros(hps.data.sampling_rate // 2, dtype=np.int16)
        with torch.no_grad():
            for piece in text.split("|"):
                audio = infer(
                    piece,
                    sdp_ratio=sdp_ratio,
                    noise_scale=noise_scale,
                    noise_scale_w=noise_scale_w,
                    length_scale=length_scale,
                    sid=speaker,
                    language=language,
                    hps=hps,
                    net_g=net_g,
                    device=device,
                )
                audio16bit = gr.processing_utils.convert_to_16_bit_wav(audio)
                audio_list.append(audio16bit)
                audio_list.append(silence)  # 将静音添加到列表中
    
    audio_concat = np.concatenate(audio_list)    
    return (hps.data.sampling_rate, audio_concat), get_character_html(text), exceed_flag, gr.update(interactive=True)


def submit_lock_fn():    
    return gr.update(interactive=False)


def init_fn():
    gr.Info("2023-11-24: 优化长句生成效果;增加示例;更新了一些小彩蛋;画了一些大饼)")
    gr.Info("Only support Chinese now. Trying to train a mutilingual model. 欢迎在 Community 中提建议~")
    
    index = random.randint(1,7)
    welcome_text = get_sentence("Welcome", index)
    
    return gr.update(value=f"./assets/audios/Welcome{index}.wav"), get_character_html(welcome_text)

def get_sentence(category, index=-1):
    if index == -1:
        index = random.randint(1, len(full_lines[category]))
    return full_lines[category][f"{index}"]

with open("./css/style.css", "r", encoding="utf-8") as f:
    customCSS = f.read()
with open("./assets/lines.json", "r", encoding="utf-8") as f:
    full_lines = json.load(f)

with gr.Blocks(css=customCSS) as demo:
    exceed_flag = gr.State(value=False)
    tmp_string = gr.Textbox(value="", visible=False)
    character_area = gr.HTML(get_character_html("你好呀!"), elem_id="character_area")
    with gr.Tab("Speak", elem_id="tab-speak"):
        speak_input = gr.Textbox(lines=1, label="Talking Flower will say:", elem_classes="wonder-card", elem_id="input_text")
        speak_button = gr.Button("Speak!", elem_id="speak_button", elem_classes="main-button wonder-card")
        example_category = gr.Examples(["夸夸你 | Praise", "游戏台词 | Scripts", "玩梗 | Meme"], fn=get_sentence, inputs=[tmp_string], outputs=[speak_input], run_on_click=True, elem_id="examples")
    with gr.Tab("Chat", elem_id="tab-chat"):
        chat_input = gr.Textbox(lines=1, placeholder="Coming Soon...", label="Chat to Talking Flower:", elem_classes="wonder-card", elem_id="input_text", interactive=False)
        chat_button = gr.Button("Chat!", elem_id="chat_button", elem_classes="main-button wonder-card")
    with gr.Tab("Mimic", elem_id="tab-mimic"):
        gr.Textbox(lines=1, placeholder="Coming Soon...", label="Choose sound to mimic:", elem_classes="wonder-card", elem_id="input_text", interactive=False)
        mimic_button = gr.Button("Mimic!", elem_id="mimic_button", elem_classes="main-button wonder-card")
    audio_output = gr.Audio(label="输出音频", show_label=False, autoplay=True, elem_id="audio_output", elem_classes="wonder-card")
    
    demo.load(
        init_fn,
        inputs=[],
        outputs=[audio_output, character_area]
    )
    speak_input.submit(submit_lock_fn, show_progress=False).then(
        speak_fn,
        inputs=[speak_input, exceed_flag],
        outputs=[audio_output, character_area, exceed_flag, speak_button],
    )
    speak_button.click(submit_lock_fn, show_progress=False).then(
        speak_fn,
        inputs=[speak_input, exceed_flag],
        outputs=[audio_output, character_area, exceed_flag, speak_button],
    )


if __name__ == "__main__":
    hps = utils.get_hparams_from_file(config.webui_config.config_path)
    version = hps.version if hasattr(hps, "version") else latest_version
    net_g = get_net_g(model_path=config.webui_config.model, version=version, device=device, hps=hps)
    reload_javascript()
    demo.launch(
        allowed_paths=["./assets"],
        show_api=False,
        inbrowser=True,
    )