MZhaovo commited on
Commit
c86f2b2
·
1 Parent(s): 425b9a7

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. __pycache__/config.cpython-39.pyc +0 -0
  2. __pycache__/emo_gen.cpython-39.pyc +0 -0
  3. __pycache__/infer.cpython-39.pyc +0 -0
  4. __pycache__/models.cpython-39.pyc +0 -0
  5. __pycache__/presets.cpython-39.pyc +0 -0
  6. bert/deberta-v2-large-japanese-char-wwm/.gitattributes +34 -0
  7. bert/deberta-v2-large-japanese-char-wwm/README.md +89 -0
  8. bert/deberta-v2-large-japanese-char-wwm/config.json +37 -0
  9. bert/deberta-v2-large-japanese-char-wwm/pytorch_model.bin +3 -0
  10. bert/deberta-v2-large-japanese-char-wwm/special_tokens_map.json +7 -0
  11. bert/deberta-v2-large-japanese-char-wwm/tokenizer_config.json +19 -0
  12. bert/deberta-v2-large-japanese-char-wwm/vocab.txt +0 -0
  13. config.py +6 -0
  14. config.yml +17 -3
  15. config_bk.yml +160 -0
  16. emo_gen.py +169 -0
  17. emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim/.gitattributes +28 -0
  18. emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim/LICENSE +437 -0
  19. emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim/README.md +127 -0
  20. emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim/config.json +122 -0
  21. emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim/preprocessor_config.json +9 -0
  22. emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim/pytorch_model.bin +3 -0
  23. emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim/vocab.json +1 -0
  24. infer.py +152 -13
  25. models.py +48 -6
  26. oldVersion/V101/__init__.py +2 -0
  27. oldVersion/V101/__pycache__/__init__.cpython-39.pyc +0 -0
  28. oldVersion/V101/__pycache__/models.cpython-39.pyc +0 -0
  29. oldVersion/V101/text/__pycache__/__init__.cpython-39.pyc +0 -0
  30. oldVersion/V101/text/__pycache__/chinese.cpython-39.pyc +0 -0
  31. oldVersion/V101/text/__pycache__/cleaner.cpython-39.pyc +0 -0
  32. oldVersion/V101/text/__pycache__/symbols.cpython-39.pyc +0 -0
  33. oldVersion/V101/text/__pycache__/tone_sandhi.cpython-39.pyc +0 -0
  34. oldVersion/V110/__pycache__/__init__.cpython-39.pyc +0 -0
  35. oldVersion/V110/__pycache__/models.cpython-39.pyc +0 -0
  36. oldVersion/V110/text/__pycache__/__init__.cpython-39.pyc +0 -0
  37. oldVersion/V110/text/__pycache__/chinese.cpython-39.pyc +0 -0
  38. oldVersion/V110/text/__pycache__/cleaner.cpython-39.pyc +0 -0
  39. oldVersion/V110/text/__pycache__/japanese.cpython-39.pyc +0 -0
  40. oldVersion/V110/text/__pycache__/symbols.cpython-39.pyc +0 -0
  41. oldVersion/V110/text/__pycache__/tone_sandhi.cpython-39.pyc +0 -0
  42. oldVersion/V111/__pycache__/__init__.cpython-39.pyc +0 -0
  43. oldVersion/V111/__pycache__/models.cpython-39.pyc +0 -0
  44. oldVersion/V111/text/__pycache__/__init__.cpython-39.pyc +0 -0
  45. oldVersion/V111/text/__pycache__/chinese.cpython-39.pyc +0 -0
  46. oldVersion/V111/text/__pycache__/cleaner.cpython-39.pyc +0 -0
  47. oldVersion/V111/text/__pycache__/japanese.cpython-39.pyc +0 -0
  48. oldVersion/V111/text/__pycache__/symbols.cpython-39.pyc +0 -0
  49. oldVersion/V111/text/__pycache__/tone_sandhi.cpython-39.pyc +0 -0
  50. oldVersion/V111/text/fix/__pycache__/__init__.cpython-39.pyc +0 -0
__pycache__/config.cpython-39.pyc CHANGED
Binary files a/__pycache__/config.cpython-39.pyc and b/__pycache__/config.cpython-39.pyc differ
 
__pycache__/emo_gen.cpython-39.pyc ADDED
Binary file (4.99 kB). View file
 
__pycache__/infer.cpython-39.pyc CHANGED
Binary files a/__pycache__/infer.cpython-39.pyc and b/__pycache__/infer.cpython-39.pyc differ
 
__pycache__/models.cpython-39.pyc CHANGED
Binary files a/__pycache__/models.cpython-39.pyc and b/__pycache__/models.cpython-39.pyc differ
 
__pycache__/presets.cpython-39.pyc CHANGED
Binary files a/__pycache__/presets.cpython-39.pyc and b/__pycache__/presets.cpython-39.pyc differ
 
bert/deberta-v2-large-japanese-char-wwm/.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
bert/deberta-v2-large-japanese-char-wwm/README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: ja
3
+ license: cc-by-sa-4.0
4
+ library_name: transformers
5
+ tags:
6
+ - deberta
7
+ - deberta-v2
8
+ - fill-mask
9
+ - character
10
+ - wwm
11
+ datasets:
12
+ - wikipedia
13
+ - cc100
14
+ - oscar
15
+ metrics:
16
+ - accuracy
17
+ mask_token: "[MASK]"
18
+ widget:
19
+ - text: "京都大学で自然言語処理を[MASK][MASK]する。"
20
+ ---
21
+
22
+ # Model Card for Japanese character-level DeBERTa V2 large
23
+
24
+ ## Model description
25
+
26
+ This is a Japanese DeBERTa V2 large model pre-trained on Japanese Wikipedia, the Japanese portion of CC-100, and the Japanese portion of OSCAR.
27
+ This model is trained with character-level tokenization and whole word masking.
28
+
29
+ ## How to use
30
+
31
+ You can use this model for masked language modeling as follows:
32
+
33
+ ```python
34
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
35
+ tokenizer = AutoTokenizer.from_pretrained('ku-nlp/deberta-v2-large-japanese-char-wwm')
36
+ model = AutoModelForMaskedLM.from_pretrained('ku-nlp/deberta-v2-large-japanese-char-wwm')
37
+
38
+ sentence = '京都大学で自然言語処理を[MASK][MASK]する。'
39
+ encoding = tokenizer(sentence, return_tensors='pt')
40
+ ...
41
+ ```
42
+
43
+ You can also fine-tune this model on downstream tasks.
44
+
45
+ ## Tokenization
46
+
47
+ There is no need to tokenize texts in advance, and you can give raw texts to the tokenizer.
48
+ The texts are tokenized into character-level tokens by [sentencepiece](https://github.com/google/sentencepiece).
49
+
50
+ ## Training data
51
+
52
+ We used the following corpora for pre-training:
53
+
54
+ - Japanese Wikipedia (as of 20221020, 3.2GB, 27M sentences, 1.3M documents)
55
+ - Japanese portion of CC-100 (85GB, 619M sentences, 66M documents)
56
+ - Japanese portion of OSCAR (54GB, 326M sentences, 25M documents)
57
+
58
+ Note that we filtered out documents annotated with "header", "footer", or "noisy" tags in OSCAR.
59
+ Also note that Japanese Wikipedia was duplicated 10 times to make the total size of the corpus comparable to that of CC-100 and OSCAR. As a result, the total size of the training data is 171GB.
60
+
61
+ ## Training procedure
62
+
63
+ We first segmented texts in the corpora into words using [Juman++ 2.0.0-rc3](https://github.com/ku-nlp/jumanpp/releases/tag/v2.0.0-rc3) for whole word masking.
64
+ Then, we built a sentencepiece model with 22,012 tokens including all characters that appear in the training corpus.
65
+
66
+ We tokenized raw corpora into character-level subwords using the sentencepiece model and trained the Japanese DeBERTa model using [transformers](https://github.com/huggingface/transformers) library.
67
+ The training took 26 days using 16 NVIDIA A100-SXM4-40GB GPUs.
68
+
69
+ The following hyperparameters were used during pre-training:
70
+
71
+ - learning_rate: 1e-4
72
+ - per_device_train_batch_size: 26
73
+ - distributed_type: multi-GPU
74
+ - num_devices: 16
75
+ - gradient_accumulation_steps: 8
76
+ - total_train_batch_size: 3,328
77
+ - max_seq_length: 512
78
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
79
+ - lr_scheduler_type: linear schedule with warmup (lr = 0 at 300k steps)
80
+ - training_steps: 260,000
81
+ - warmup_steps: 10,000
82
+
83
+ The accuracy of the trained model on the masked language modeling task was 0.795.
84
+ The evaluation set consists of 5,000 randomly sampled documents from each of the training corpora.
85
+
86
+ ## Acknowledgments
87
+
88
+ This work was supported by Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures (JHPCN) through General Collaboration Project no. jh221004, "Developing a Platform for Constructing and Sharing of Large-Scale Japanese Language Models".
89
+ For training models, we used the mdx: a platform for the data-driven future.
bert/deberta-v2-large-japanese-char-wwm/config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "DebertaV2ForMaskedLM"
4
+ ],
5
+ "attention_head_size": 64,
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "conv_act": "gelu",
8
+ "conv_kernel_size": 3,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-07,
15
+ "max_position_embeddings": 512,
16
+ "max_relative_positions": -1,
17
+ "model_type": "deberta-v2",
18
+ "norm_rel_ebd": "layer_norm",
19
+ "num_attention_heads": 16,
20
+ "num_hidden_layers": 24,
21
+ "pad_token_id": 0,
22
+ "pooler_dropout": 0,
23
+ "pooler_hidden_act": "gelu",
24
+ "pooler_hidden_size": 1024,
25
+ "pos_att_type": [
26
+ "p2c",
27
+ "c2p"
28
+ ],
29
+ "position_biased_input": false,
30
+ "position_buckets": 256,
31
+ "relative_attention": true,
32
+ "share_att_key": true,
33
+ "torch_dtype": "float16",
34
+ "transformers_version": "4.25.1",
35
+ "type_vocab_size": 0,
36
+ "vocab_size": 22012
37
+ }
bert/deberta-v2-large-japanese-char-wwm/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf0dab8ad87bd7c22e85ec71e04f2240804fda6d33196157d6b5923af6ea1201
3
+ size 1318456639
bert/deberta-v2-large-japanese-char-wwm/special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
bert/deberta-v2-large-japanese-char-wwm/tokenizer_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "do_lower_case": false,
4
+ "do_subword_tokenize": true,
5
+ "do_word_tokenize": true,
6
+ "jumanpp_kwargs": null,
7
+ "mask_token": "[MASK]",
8
+ "mecab_kwargs": null,
9
+ "model_max_length": 1000000000000000019884624838656,
10
+ "never_split": null,
11
+ "pad_token": "[PAD]",
12
+ "sep_token": "[SEP]",
13
+ "special_tokens_map_file": null,
14
+ "subword_tokenizer_type": "character",
15
+ "sudachi_kwargs": null,
16
+ "tokenizer_class": "BertJapaneseTokenizer",
17
+ "unk_token": "[UNK]",
18
+ "word_tokenizer_type": "basic"
19
+ }
bert/deberta-v2-large-japanese-char-wwm/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
config.py CHANGED
@@ -120,11 +120,17 @@ class Train_ms_config:
120
  env: Dict[str, any],
121
  base: Dict[str, any],
122
  model: str,
 
 
 
123
  ):
124
  self.env = env # 需要加载的环境变量
125
  self.base = base # 底模配置
126
  self.model = model # 训练模型存储目录,该路径为相对于dataset_path的路径,而非项目根目录
127
  self.config_path = config_path # 配置文件路径
 
 
 
128
 
129
  @classmethod
130
  def from_dict(cls, dataset_path: str, data: Dict[str, any]):
 
120
  env: Dict[str, any],
121
  base: Dict[str, any],
122
  model: str,
123
+ num_workers: int,
124
+ spec_cache: bool,
125
+ keep_ckpts: int,
126
  ):
127
  self.env = env # 需要加载的环境变量
128
  self.base = base # 底模配置
129
  self.model = model # 训练模型存储目录,该路径为相对于dataset_path的路径,而非项目根目录
130
  self.config_path = config_path # 配置文件路径
131
+ self.num_workers = num_workers # worker数量
132
+ self.spec_cache = spec_cache # 是否启用spec缓存
133
+ self.keep_ckpts = keep_ckpts # ckpt数量
134
 
135
  @classmethod
136
  def from_dict(cls, dataset_path: str, data: Dict[str, any]):
config.yml CHANGED
@@ -56,19 +56,27 @@ bert_gen:
56
  # 使用多卡推理
57
  use_multi_device: false
58
 
 
 
 
 
 
 
 
 
 
59
 
60
  # train 训练配置
61
  # 注意, “:” 后需要加空格
62
  train_ms:
63
- # 需要加载的环境变量,多显卡训练时RANK请手动在环境变量填写
64
- # 环境变量对应名称环境变量不存在时加载,也就是说手动添加的环境变量优先级更高,会覆盖本配置文件
65
  env:
66
  MASTER_ADDR: "localhost"
67
  MASTER_PORT: 10086
68
  WORLD_SIZE: 1
 
69
  RANK: 0
70
  # 可以填写任意名的环境变量
71
- THE_ENV_VAR_YOU_NEED_TO_USE: "1234567"
72
  # 底模设置
73
  base:
74
  use_base_model: true
@@ -78,6 +86,12 @@ train_ms:
78
  model: "models"
79
  # 配置文件路径
80
  config_path: "config.json"
 
 
 
 
 
 
81
 
82
 
83
  # webui webui配置
 
56
  # 使用多卡推理
57
  use_multi_device: false
58
 
59
+ # emo_gen 相关配置
60
+ # 注意, “:” 后需要加空格
61
+ emo_gen:
62
+ # 训练数据集配置文件路径
63
+ config_path: "Data/TalkFlower_CNzh/config.json"
64
+ # 并行数
65
+ num_processes: 2
66
+ # 使用设备:可选项 "cuda" 显卡推理,"cpu" cpu推理
67
+ device: "cuda"
68
 
69
  # train 训练配置
70
  # 注意, “:” 后需要加空格
71
  train_ms:
 
 
72
  env:
73
  MASTER_ADDR: "localhost"
74
  MASTER_PORT: 10086
75
  WORLD_SIZE: 1
76
+ LOCAL_RANK: 0
77
  RANK: 0
78
  # 可以填写任意名的环境变量
79
+ # THE_ENV_VAR_YOU_NEED_TO_USE: "1234567"
80
  # 底模设置
81
  base:
82
  use_base_model: true
 
86
  model: "models"
87
  # 配置文件路径
88
  config_path: "config.json"
89
+ # 训练使用的worker,不建议超过CPU核心数
90
+ num_workers: 16
91
+ # 关闭此项可以节约接近50%的磁盘空间,但是可能导致实际训练速度变慢和更高的CPU使用率。
92
+ spec_cache: True
93
+ # 保存的检查点数量,多于此数目的权重会被删除来节省空间。
94
+ keep_ckpts: 8
95
 
96
 
97
  # webui webui配置
config_bk.yml ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 全局配置
2
+ # 对于希望在同一时间使用多个配置文件的情况,例如两个GPU同时跑两个训练集:通过环境变量指定配置文件,不指定则默认为./config.yml
3
+
4
+ # 拟提供通用路径配置,统一存放数据,避免数据放得很乱
5
+ # 每个数据集与其对应的模型存放至统一路径下,后续所有的路径配置均为相对于datasetPath的路径
6
+ # 不填或者填空则路径为相对于项目根目录的路径
7
+ dataset_path: "Data/TalkFlower_CNzh"
8
+
9
+ # 模型镜像源,默认huggingface,使用openi镜像源需指定openi_token
10
+ mirror: ""
11
+ openi_token: "" # openi token
12
+
13
+ # resample 音频重采样配置
14
+ # 注意, “:” 后需要加空格
15
+ resample:
16
+ # 目标重采样率
17
+ sampling_rate: 44100
18
+ # 音频文件输入路径,重采样会将该路径下所有.wav音频文件重采样
19
+ # 请填入相对于datasetPath的相对路径
20
+ in_dir: "audios/raw" # 相对于根目录的路径为 /datasetPath/in_dir
21
+ # 音频文件重采样后输出路径
22
+ out_dir: "audios/wavs"
23
+
24
+
25
+ # preprocess_text 数据集预处理相关配置
26
+ # 注意, “:” 后需要加空格
27
+ preprocess_text:
28
+ # 原始文本文件路径,文本格式应为{wav_path}|{speaker_name}|{language}|{text}。
29
+ transcription_path: "filelists/TalkFlower_CNzh.list"
30
+ # 数据清洗后文本路径,可以不填。不填则将在原始文本目录生成
31
+ cleaned_path: ""
32
+ # 训练集路径
33
+ train_path: "filelists/train.list"
34
+ # 验证集路径
35
+ val_path: "filelists/val.list"
36
+ # 配置文件路径
37
+ config_path: "Data/TalkFlower_CNzh/config.json"
38
+ # 每个speaker的验证集条数
39
+ val_per_spk: 5
40
+ # 验证集最大条数,多于的会被截断并放到训练集中
41
+ max_val_total: 12
42
+ # 是否进行数据清洗
43
+ clean: true
44
+
45
+
46
+ # bert_gen 相关配置
47
+ # 注意, “:” 后需要加空格
48
+ bert_gen:
49
+ # 训练数据集配置文件路径
50
+ config_path: "Data/TalkFlower_CNzh/config.json"
51
+ # 并行数
52
+ num_processes: 8
53
+ # 使用设备:可选项 "cuda" 显卡推理,"cpu" cpu推理
54
+ # 该选项同时决定了get_bert_feature的默认设备
55
+ device: "cuda"
56
+ # 使用多卡推理
57
+ use_multi_device: false
58
+
59
+
60
+ # train 训练配置
61
+ # 注意, “:” 后需要加空格
62
+ train_ms:
63
+ # 需要加载的环境变量,多显卡训练时RANK请手动在环境变量填写
64
+ # 环境变量对应名称环境变量不存在时加载,也就是说手动添加的环境变量优先级更高,会覆盖本配置文件
65
+ env:
66
+ MASTER_ADDR: "localhost"
67
+ MASTER_PORT: 10086
68
+ WORLD_SIZE: 1
69
+ RANK: 0
70
+ # 可以填写任意名的环境变量
71
+ THE_ENV_VAR_YOU_NEED_TO_USE: "1234567"
72
+ # 底模设置
73
+ base:
74
+ use_base_model: true
75
+ repo_id: "Stardust_minus/Bert-VITS2"
76
+ model_image: "Bert-VITS2中日底模" # openi网页的模型名
77
+ # 训练模型存储目录:与旧版本的区别,原先数据集是存放在logs/model_name下的,现在改为统一存放在Data/你的数据集/models下
78
+ model: "models"
79
+ # 配置文件路径
80
+ config_path: "config.json"
81
+
82
+
83
+ # webui webui配置
84
+ # 注意, “:” 后需要加空格
85
+ webui:
86
+ # 推理设备
87
+ device: "cpu"
88
+ # 模型路径
89
+ model: "../../models/G_48000.pth"
90
+ # 配置文件路径
91
+ config_path: "config.json"
92
+ # 端口号
93
+ port: 7860
94
+ # 是否公开部署,对外网开放
95
+ share: false
96
+ # 是否开启debug模式
97
+ debug: false
98
+ # 语种识别库,可选langid, fastlid
99
+ language_identification_library: "langid"
100
+
101
+
102
+ # server api配置
103
+ # 注意, “:” 后需要加空格
104
+ # 注意,本配置下的所有配置均为相对于根目录的路径
105
+ server:
106
+ # 端口号
107
+ port: 5000
108
+ # 模型默认使用设备:但是当前并没有实现这个配置。
109
+ device: "cuda"
110
+ # 需要加载的所有模型的配置
111
+ # 注意,所有模型都必须正确配置model与config的路径,空路径会导致加载错误。
112
+ models:
113
+ - # 模型的路径
114
+ model: "models/G_48000.pth"
115
+ # 模型config.json的路径
116
+ config: "TalkFlower_CNzh/config.json"
117
+ # 模型使用设备,若填写则会覆盖默认配置
118
+ device: "cuda"
119
+ # 模型默认使用的语言
120
+ language: "ZH"
121
+ # 模型人物默认参数
122
+ # 不必填写所有人物,不填的使用默认值
123
+ # 暂时不用填写,当前尚未实现按人区分配置
124
+ speakers:
125
+ - speaker: "科比"
126
+ sdp_ratio: 0.2
127
+ noise_scale: 0.6
128
+ noise_scale_w: 0.8
129
+ length_scale: 1
130
+ - speaker: "五条悟"
131
+ sdp_ratio: 0.3
132
+ noise_scale: 0.7
133
+ noise_scale_w: 0.8
134
+ length_scale: 0.5
135
+ - speaker: "安倍晋三"
136
+ sdp_ratio: 0.2
137
+ noise_scale: 0.6
138
+ noise_scale_w: 0.8
139
+ length_scale: 1.2
140
+ - # 模型的路径
141
+ model: ""
142
+ # 模型config.json的路径
143
+ config: ""
144
+ # 模型使用设备,若填写则会覆盖默认配置
145
+ device: "cpu"
146
+ # 模型默认使用的语言
147
+ language: "JP"
148
+ # 模型人物默认参数
149
+ # 不必填写所有人物,不填的使用默认值
150
+ speakers: [ ] # 也可以不填
151
+
152
+
153
+ # 百度翻译开放平台 api配置
154
+ # api接入文档 https://api.fanyi.baidu.com/doc/21
155
+ # 请不要在github等网站公开分享你的app id 与 key
156
+ translate:
157
+ # 你的APPID
158
+ "app_key": ""
159
+ # 你的密钥
160
+ "secret_key": ""
emo_gen.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch.utils.data import Dataset
4
+ from torch.utils.data import DataLoader
5
+ from transformers import Wav2Vec2Processor
6
+ from transformers.models.wav2vec2.modeling_wav2vec2 import (
7
+ Wav2Vec2Model,
8
+ Wav2Vec2PreTrainedModel,
9
+ )
10
+ import librosa
11
+ import numpy as np
12
+ import argparse
13
+ from config import config
14
+ import utils
15
+ import os
16
+ from tqdm import tqdm
17
+
18
+
19
+ class RegressionHead(nn.Module):
20
+ r"""Classification head."""
21
+
22
+ def __init__(self, config):
23
+ super().__init__()
24
+
25
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
26
+ self.dropout = nn.Dropout(config.final_dropout)
27
+ self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
28
+
29
+ def forward(self, features, **kwargs):
30
+ x = features
31
+ x = self.dropout(x)
32
+ x = self.dense(x)
33
+ x = torch.tanh(x)
34
+ x = self.dropout(x)
35
+ x = self.out_proj(x)
36
+
37
+ return x
38
+
39
+
40
+ class EmotionModel(Wav2Vec2PreTrainedModel):
41
+ r"""Speech emotion classifier."""
42
+
43
+ def __init__(self, config):
44
+ super().__init__(config)
45
+
46
+ self.config = config
47
+ self.wav2vec2 = Wav2Vec2Model(config)
48
+ self.classifier = RegressionHead(config)
49
+ self.init_weights()
50
+
51
+ def forward(
52
+ self,
53
+ input_values,
54
+ ):
55
+ outputs = self.wav2vec2(input_values)
56
+ hidden_states = outputs[0]
57
+ hidden_states = torch.mean(hidden_states, dim=1)
58
+ logits = self.classifier(hidden_states)
59
+
60
+ return hidden_states, logits
61
+
62
+
63
+ class AudioDataset(Dataset):
64
+ def __init__(self, list_of_wav_files, sr, processor):
65
+ self.list_of_wav_files = list_of_wav_files
66
+ self.processor = processor
67
+ self.sr = sr
68
+
69
+ def __len__(self):
70
+ return len(self.list_of_wav_files)
71
+
72
+ def __getitem__(self, idx):
73
+ wav_file = self.list_of_wav_files[idx]
74
+ audio_data, _ = librosa.load(wav_file, sr=self.sr)
75
+ processed_data = self.processor(audio_data, sampling_rate=self.sr)[
76
+ "input_values"
77
+ ][0]
78
+ return torch.from_numpy(processed_data)
79
+
80
+
81
+ model_name = "./emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim"
82
+ processor = Wav2Vec2Processor.from_pretrained(model_name)
83
+ model = EmotionModel.from_pretrained(model_name)
84
+
85
+
86
+ def process_func(
87
+ x: np.ndarray,
88
+ sampling_rate: int,
89
+ model: EmotionModel,
90
+ processor: Wav2Vec2Processor,
91
+ device: str,
92
+ embeddings: bool = False,
93
+ ) -> np.ndarray:
94
+ r"""Predict emotions or extract embeddings from raw audio signal."""
95
+ model = model.to(device)
96
+ y = processor(x, sampling_rate=sampling_rate)
97
+ y = y["input_values"][0]
98
+ y = torch.from_numpy(y).unsqueeze(0).to(device)
99
+
100
+ # run through model
101
+ with torch.no_grad():
102
+ y = model(y)[0 if embeddings else 1]
103
+
104
+ # convert to numpy
105
+ y = y.detach().cpu().numpy()
106
+
107
+ return y
108
+
109
+
110
+ def get_emo(path):
111
+ wav, sr = librosa.load(path, 16000)
112
+ device = config.bert_gen_config.device
113
+ return process_func(
114
+ np.expand_dims(wav, 0).astype(np.float64),
115
+ sr,
116
+ model,
117
+ processor,
118
+ device,
119
+ embeddings=True,
120
+ ).squeeze(0)
121
+
122
+
123
+ if __name__ == "__main__":
124
+ parser = argparse.ArgumentParser()
125
+ parser.add_argument(
126
+ "-c", "--config", type=str, default=config.bert_gen_config.config_path
127
+ )
128
+ parser.add_argument(
129
+ "--num_processes", type=int, default=config.bert_gen_config.num_processes
130
+ )
131
+ args, _ = parser.parse_known_args()
132
+ config_path = args.config
133
+ hps = utils.get_hparams_from_file(config_path)
134
+
135
+ device = config.bert_gen_config.device
136
+
137
+ model_name = "./emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim"
138
+ processor = (
139
+ Wav2Vec2Processor.from_pretrained(model_name)
140
+ if processor is None
141
+ else processor
142
+ )
143
+ model = (
144
+ EmotionModel.from_pretrained(model_name).to(device)
145
+ if model is None
146
+ else model.to(device)
147
+ )
148
+
149
+ lines = []
150
+ with open(hps.data.training_files, encoding="utf-8") as f:
151
+ lines.extend(f.readlines())
152
+
153
+ with open(hps.data.validation_files, encoding="utf-8") as f:
154
+ lines.extend(f.readlines())
155
+
156
+ wavnames = [line.split("|")[0] for line in lines]
157
+ dataset = AudioDataset(wavnames, 16000, processor)
158
+ data_loader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=16)
159
+
160
+ with torch.no_grad():
161
+ for i, data in tqdm(enumerate(data_loader), total=len(data_loader)):
162
+ wavname = wavnames[i]
163
+ emo_path = wavname.replace(".wav", ".emo.npy")
164
+ if os.path.exists(emo_path):
165
+ continue
166
+ emb = model(data.to(device))[0].detach().cpu().numpy()
167
+ np.save(emo_path, emb)
168
+
169
+ print("Emo vec 生成完毕!")
emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim/.gitattributes ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.wasm filter=lfs diff=lfs merge=lfs -text
25
+ *.xz filter=lfs diff=lfs merge=lfs -text
26
+ *.zip filter=lfs diff=lfs merge=lfs -text
27
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
28
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim/LICENSE ADDED
@@ -0,0 +1,437 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Attribution-NonCommercial-ShareAlike 4.0 International
2
+
3
+ =======================================================================
4
+
5
+ Creative Commons Corporation ("Creative Commons") is not a law firm and
6
+ does not provide legal services or legal advice. Distribution of
7
+ Creative Commons public licenses does not create a lawyer-client or
8
+ other relationship. Creative Commons makes its licenses and related
9
+ information available on an "as-is" basis. Creative Commons gives no
10
+ warranties regarding its licenses, any material licensed under their
11
+ terms and conditions, or any related information. Creative Commons
12
+ disclaims all liability for damages resulting from their use to the
13
+ fullest extent possible.
14
+
15
+ Using Creative Commons Public Licenses
16
+
17
+ Creative Commons public licenses provide a standard set of terms and
18
+ conditions that creators and other rights holders may use to share
19
+ original works of authorship and other material subject to copyright
20
+ and certain other rights specified in the public license below. The
21
+ following considerations are for informational purposes only, are not
22
+ exhaustive, and do not form part of our licenses.
23
+
24
+ Considerations for licensors: Our public licenses are
25
+ intended for use by those authorized to give the public
26
+ permission to use material in ways otherwise restricted by
27
+ copyright and certain other rights. Our licenses are
28
+ irrevocable. Licensors should read and understand the terms
29
+ and conditions of the license they choose before applying it.
30
+ Licensors should also secure all rights necessary before
31
+ applying our licenses so that the public can reuse the
32
+ material as expected. Licensors should clearly mark any
33
+ material not subject to the license. This includes other CC-
34
+ licensed material, or material used under an exception or
35
+ limitation to copyright. More considerations for licensors:
36
+ wiki.creativecommons.org/Considerations_for_licensors
37
+
38
+ Considerations for the public: By using one of our public
39
+ licenses, a licensor grants the public permission to use the
40
+ licensed material under specified terms and conditions. If
41
+ the licensor's permission is not necessary for any reason--for
42
+ example, because of any applicable exception or limitation to
43
+ copyright--then that use is not regulated by the license. Our
44
+ licenses grant only permissions under copyright and certain
45
+ other rights that a licensor has authority to grant. Use of
46
+ the licensed material may still be restricted for other
47
+ reasons, including because others have copyright or other
48
+ rights in the material. A licensor may make special requests,
49
+ such as asking that all changes be marked or described.
50
+ Although not required by our licenses, you are encouraged to
51
+ respect those requests where reasonable. More considerations
52
+ for the public:
53
+ wiki.creativecommons.org/Considerations_for_licensees
54
+
55
+ =======================================================================
56
+
57
+ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
58
+ Public License
59
+
60
+ By exercising the Licensed Rights (defined below), You accept and agree
61
+ to be bound by the terms and conditions of this Creative Commons
62
+ Attribution-NonCommercial-ShareAlike 4.0 International Public License
63
+ ("Public License"). To the extent this Public License may be
64
+ interpreted as a contract, You are granted the Licensed Rights in
65
+ consideration of Your acceptance of these terms and conditions, and the
66
+ Licensor grants You such rights in consideration of benefits the
67
+ Licensor receives from making the Licensed Material available under
68
+ these terms and conditions.
69
+
70
+
71
+ Section 1 -- Definitions.
72
+
73
+ a. Adapted Material means material subject to Copyright and Similar
74
+ Rights that is derived from or based upon the Licensed Material
75
+ and in which the Licensed Material is translated, altered,
76
+ arranged, transformed, or otherwise modified in a manner requiring
77
+ permission under the Copyright and Similar Rights held by the
78
+ Licensor. For purposes of this Public License, where the Licensed
79
+ Material is a musical work, performance, or sound recording,
80
+ Adapted Material is always produced where the Licensed Material is
81
+ synched in timed relation with a moving image.
82
+
83
+ b. Adapter's License means the license You apply to Your Copyright
84
+ and Similar Rights in Your contributions to Adapted Material in
85
+ accordance with the terms and conditions of this Public License.
86
+
87
+ c. BY-NC-SA Compatible License means a license listed at
88
+ creativecommons.org/compatiblelicenses, approved by Creative
89
+ Commons as essentially the equivalent of this Public License.
90
+
91
+ d. Copyright and Similar Rights means copyright and/or similar rights
92
+ closely related to copyright including, without limitation,
93
+ performance, broadcast, sound recording, and Sui Generis Database
94
+ Rights, without regard to how the rights are labeled or
95
+ categorized. For purposes of this Public License, the rights
96
+ specified in Section 2(b)(1)-(2) are not Copyright and Similar
97
+ Rights.
98
+
99
+ e. Effective Technological Measures means those measures that, in the
100
+ absence of proper authority, may not be circumvented under laws
101
+ fulfilling obligations under Article 11 of the WIPO Copyright
102
+ Treaty adopted on December 20, 1996, and/or similar international
103
+ agreements.
104
+
105
+ f. Exceptions and Limitations means fair use, fair dealing, and/or
106
+ any other exception or limitation to Copyright and Similar Rights
107
+ that applies to Your use of the Licensed Material.
108
+
109
+ g. License Elements means the license attributes listed in the name
110
+ of a Creative Commons Public License. The License Elements of this
111
+ Public License are Attribution, NonCommercial, and ShareAlike.
112
+
113
+ h. Licensed Material means the artistic or literary work, database,
114
+ or other material to which the Licensor applied this Public
115
+ License.
116
+
117
+ i. Licensed Rights means the rights granted to You subject to the
118
+ terms and conditions of this Public License, which are limited to
119
+ all Copyright and Similar Rights that apply to Your use of the
120
+ Licensed Material and that the Licensor has authority to license.
121
+
122
+ j. Licensor means the individual(s) or entity(ies) granting rights
123
+ under this Public License.
124
+
125
+ k. NonCommercial means not primarily intended for or directed towards
126
+ commercial advantage or monetary compensation. For purposes of
127
+ this Public License, the exchange of the Licensed Material for
128
+ other material subject to Copyright and Similar Rights by digital
129
+ file-sharing or similar means is NonCommercial provided there is
130
+ no payment of monetary compensation in connection with the
131
+ exchange.
132
+
133
+ l. Share means to provide material to the public by any means or
134
+ process that requires permission under the Licensed Rights, such
135
+ as reproduction, public display, public performance, distribution,
136
+ dissemination, communication, or importation, and to make material
137
+ available to the public including in ways that members of the
138
+ public may access the material from a place and at a time
139
+ individually chosen by them.
140
+
141
+ m. Sui Generis Database Rights means rights other than copyright
142
+ resulting from Directive 96/9/EC of the European Parliament and of
143
+ the Council of 11 March 1996 on the legal protection of databases,
144
+ as amended and/or succeeded, as well as other essentially
145
+ equivalent rights anywhere in the world.
146
+
147
+ n. You means the individual or entity exercising the Licensed Rights
148
+ under this Public License. Your has a corresponding meaning.
149
+
150
+
151
+ Section 2 -- Scope.
152
+
153
+ a. License grant.
154
+
155
+ 1. Subject to the terms and conditions of this Public License,
156
+ the Licensor hereby grants You a worldwide, royalty-free,
157
+ non-sublicensable, non-exclusive, irrevocable license to
158
+ exercise the Licensed Rights in the Licensed Material to:
159
+
160
+ a. reproduce and Share the Licensed Material, in whole or
161
+ in part, for NonCommercial purposes only; and
162
+
163
+ b. produce, reproduce, and Share Adapted Material for
164
+ NonCommercial purposes only.
165
+
166
+ 2. Exceptions and Limitations. For the avoidance of doubt, where
167
+ Exceptions and Limitations apply to Your use, this Public
168
+ License does not apply, and You do not need to comply with
169
+ its terms and conditions.
170
+
171
+ 3. Term. The term of this Public License is specified in Section
172
+ 6(a).
173
+
174
+ 4. Media and formats; technical modifications allowed. The
175
+ Licensor authorizes You to exercise the Licensed Rights in
176
+ all media and formats whether now known or hereafter created,
177
+ and to make technical modifications necessary to do so. The
178
+ Licensor waives and/or agrees not to assert any right or
179
+ authority to forbid You from making technical modifications
180
+ necessary to exercise the Licensed Rights, including
181
+ technical modifications necessary to circumvent Effective
182
+ Technological Measures. For purposes of this Public License,
183
+ simply making modifications authorized by this Section 2(a)
184
+ (4) never produces Adapted Material.
185
+
186
+ 5. Downstream recipients.
187
+
188
+ a. Offer from the Licensor -- Licensed Material. Every
189
+ recipient of the Licensed Material automatically
190
+ receives an offer from the Licensor to exercise the
191
+ Licensed Rights under the terms and conditions of this
192
+ Public License.
193
+
194
+ b. Additional offer from the Licensor -- Adapted Material.
195
+ Every recipient of Adapted Material from You
196
+ automatically receives an offer from the Licensor to
197
+ exercise the Licensed Rights in the Adapted Material
198
+ under the conditions of the Adapter's License You apply.
199
+
200
+ c. No downstream restrictions. You may not offer or impose
201
+ any additional or different terms or conditions on, or
202
+ apply any Effective Technological Measures to, the
203
+ Licensed Material if doing so restricts exercise of the
204
+ Licensed Rights by any recipient of the Licensed
205
+ Material.
206
+
207
+ 6. No endorsement. Nothing in this Public License constitutes or
208
+ may be construed as permission to assert or imply that You
209
+ are, or that Your use of the Licensed Material is, connected
210
+ with, or sponsored, endorsed, or granted official status by,
211
+ the Licensor or others designated to receive attribution as
212
+ provided in Section 3(a)(1)(A)(i).
213
+
214
+ b. Other rights.
215
+
216
+ 1. Moral rights, such as the right of integrity, are not
217
+ licensed under this Public License, nor are publicity,
218
+ privacy, and/or other similar personality rights; however, to
219
+ the extent possible, the Licensor waives and/or agrees not to
220
+ assert any such rights held by the Licensor to the limited
221
+ extent necessary to allow You to exercise the Licensed
222
+ Rights, but not otherwise.
223
+
224
+ 2. Patent and trademark rights are not licensed under this
225
+ Public License.
226
+
227
+ 3. To the extent possible, the Licensor waives any right to
228
+ collect royalties from You for the exercise of the Licensed
229
+ Rights, whether directly or through a collecting society
230
+ under any voluntary or waivable statutory or compulsory
231
+ licensing scheme. In all other cases the Licensor expressly
232
+ reserves any right to collect such royalties, including when
233
+ the Licensed Material is used other than for NonCommercial
234
+ purposes.
235
+
236
+
237
+ Section 3 -- License Conditions.
238
+
239
+ Your exercise of the Licensed Rights is expressly made subject to the
240
+ following conditions.
241
+
242
+ a. Attribution.
243
+
244
+ 1. If You Share the Licensed Material (including in modified
245
+ form), You must:
246
+
247
+ a. retain the following if it is supplied by the Licensor
248
+ with the Licensed Material:
249
+
250
+ i. identification of the creator(s) of the Licensed
251
+ Material and any others designated to receive
252
+ attribution, in any reasonable manner requested by
253
+ the Licensor (including by pseudonym if
254
+ designated);
255
+
256
+ ii. a copyright notice;
257
+
258
+ iii. a notice that refers to this Public License;
259
+
260
+ iv. a notice that refers to the disclaimer of
261
+ warranties;
262
+
263
+ v. a URI or hyperlink to the Licensed Material to the
264
+ extent reasonably practicable;
265
+
266
+ b. indicate if You modified the Licensed Material and
267
+ retain an indication of any previous modifications; and
268
+
269
+ c. indicate the Licensed Material is licensed under this
270
+ Public License, and include the text of, or the URI or
271
+ hyperlink to, this Public License.
272
+
273
+ 2. You may satisfy the conditions in Section 3(a)(1) in any
274
+ reasonable manner based on the medium, means, and context in
275
+ which You Share the Licensed Material. For example, it may be
276
+ reasonable to satisfy the conditions by providing a URI or
277
+ hyperlink to a resource that includes the required
278
+ information.
279
+ 3. If requested by the Licensor, You must remove any of the
280
+ information required by Section 3(a)(1)(A) to the extent
281
+ reasonably practicable.
282
+
283
+ b. ShareAlike.
284
+
285
+ In addition to the conditions in Section 3(a), if You Share
286
+ Adapted Material You produce, the following conditions also apply.
287
+
288
+ 1. The Adapter's License You apply must be a Creative Commons
289
+ license with the same License Elements, this version or
290
+ later, or a BY-NC-SA Compatible License.
291
+
292
+ 2. You must include the text of, or the URI or hyperlink to, the
293
+ Adapter's License You apply. You may satisfy this condition
294
+ in any reasonable manner based on the medium, means, and
295
+ context in which You Share Adapted Material.
296
+
297
+ 3. You may not offer or impose any additional or different terms
298
+ or conditions on, or apply any Effective Technological
299
+ Measures to, Adapted Material that restrict exercise of the
300
+ rights granted under the Adapter's License You apply.
301
+
302
+
303
+ Section 4 -- Sui Generis Database Rights.
304
+
305
+ Where the Licensed Rights include Sui Generis Database Rights that
306
+ apply to Your use of the Licensed Material:
307
+
308
+ a. for the avoidance of doubt, Section 2(a)(1) grants You the right
309
+ to extract, reuse, reproduce, and Share all or a substantial
310
+ portion of the contents of the database for NonCommercial purposes
311
+ only;
312
+
313
+ b. if You include all or a substantial portion of the database
314
+ contents in a database in which You have Sui Generis Database
315
+ Rights, then the database in which You have Sui Generis Database
316
+ Rights (but not its individual contents) is Adapted Material,
317
+ including for purposes of Section 3(b); and
318
+
319
+ c. You must comply with the conditions in Section 3(a) if You Share
320
+ all or a substantial portion of the contents of the database.
321
+
322
+ For the avoidance of doubt, this Section 4 supplements and does not
323
+ replace Your obligations under this Public License where the Licensed
324
+ Rights include other Copyright and Similar Rights.
325
+
326
+
327
+ Section 5 -- Disclaimer of Warranties and Limitation of Liability.
328
+
329
+ a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
330
+ EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
331
+ AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
332
+ ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
333
+ IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
334
+ WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
335
+ PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
336
+ ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
337
+ KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
338
+ ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
339
+
340
+ b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
341
+ TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
342
+ NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
343
+ INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
344
+ COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
345
+ USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
346
+ ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
347
+ DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
348
+ IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
349
+
350
+ c. The disclaimer of warranties and limitation of liability provided
351
+ above shall be interpreted in a manner that, to the extent
352
+ possible, most closely approximates an absolute disclaimer and
353
+ waiver of all liability.
354
+
355
+
356
+ Section 6 -- Term and Termination.
357
+
358
+ a. This Public License applies for the term of the Copyright and
359
+ Similar Rights licensed here. However, if You fail to comply with
360
+ this Public License, then Your rights under this Public License
361
+ terminate automatically.
362
+
363
+ b. Where Your right to use the Licensed Material has terminated under
364
+ Section 6(a), it reinstates:
365
+
366
+ 1. automatically as of the date the violation is cured, provided
367
+ it is cured within 30 days of Your discovery of the
368
+ violation; or
369
+
370
+ 2. upon express reinstatement by the Licensor.
371
+
372
+ For the avoidance of doubt, this Section 6(b) does not affect any
373
+ right the Licensor may have to seek remedies for Your violations
374
+ of this Public License.
375
+
376
+ c. For the avoidance of doubt, the Licensor may also offer the
377
+ Licensed Material under separate terms or conditions or stop
378
+ distributing the Licensed Material at any time; however, doing so
379
+ will not terminate this Public License.
380
+
381
+ d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
382
+ License.
383
+
384
+
385
+ Section 7 -- Other Terms and Conditions.
386
+
387
+ a. The Licensor shall not be bound by any additional or different
388
+ terms or conditions communicated by You unless expressly agreed.
389
+
390
+ b. Any arrangements, understandings, or agreements regarding the
391
+ Licensed Material not stated herein are separate from and
392
+ independent of the terms and conditions of this Public License.
393
+
394
+
395
+ Section 8 -- Interpretation.
396
+
397
+ a. For the avoidance of doubt, this Public License does not, and
398
+ shall not be interpreted to, reduce, limit, restrict, or impose
399
+ conditions on any use of the Licensed Material that could lawfully
400
+ be made without permission under this Public License.
401
+
402
+ b. To the extent possible, if any provision of this Public License is
403
+ deemed unenforceable, it shall be automatically reformed to the
404
+ minimum extent necessary to make it enforceable. If the provision
405
+ cannot be reformed, it shall be severed from this Public License
406
+ without affecting the enforceability of the remaining terms and
407
+ conditions.
408
+
409
+ c. No term or condition of this Public License will be waived and no
410
+ failure to comply consented to unless expressly agreed to by the
411
+ Licensor.
412
+
413
+ d. Nothing in this Public License constitutes or may be interpreted
414
+ as a limitation upon, or waiver of, any privileges and immunities
415
+ that apply to the Licensor or You, including from the legal
416
+ processes of any jurisdiction or authority.
417
+
418
+ =======================================================================
419
+
420
+ Creative Commons is not a party to its public
421
+ licenses. Notwithstanding, Creative Commons may elect to apply one of
422
+ its public licenses to material it publishes and in those instances
423
+ will be considered the “Licensor.” The text of the Creative Commons
424
+ public licenses is dedicated to the public domain under the CC0 Public
425
+ Domain Dedication. Except for the limited purpose of indicating that
426
+ material is shared under a Creative Commons public license or as
427
+ otherwise permitted by the Creative Commons policies published at
428
+ creativecommons.org/policies, Creative Commons does not authorize the
429
+ use of the trademark "Creative Commons" or any other trademark or logo
430
+ of Creative Commons without its prior written consent including,
431
+ without limitation, in connection with any unauthorized modifications
432
+ to any of its public licenses or any other arrangements,
433
+ understandings, or agreements concerning use of licensed material. For
434
+ the avoidance of doubt, this paragraph does not form part of the
435
+ public licenses.
436
+
437
+ Creative Commons may be contacted at creativecommons.org.
emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim/README.md ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets:
4
+ - msp-podcast
5
+ inference: true
6
+ tags:
7
+ - speech
8
+ - audio
9
+ - wav2vec2
10
+ - audio-classification
11
+ - emotion-recognition
12
+ license: cc-by-nc-sa-4.0
13
+ pipeline_tag: audio-classification
14
+ ---
15
+
16
+ # Model for Dimensional Speech Emotion Recognition based on Wav2vec 2.0
17
+
18
+ The model expects a raw audio signal as input and outputs predictions for arousal, dominance and valence in a range of approximately 0...1. In addition, it also provides the pooled states of the last transformer layer. The model was created by fine-tuning [
19
+ Wav2Vec2-Large-Robust](https://huggingface.co/facebook/wav2vec2-large-robust) on [MSP-Podcast](https://ecs.utdallas.edu/research/researchlabs/msp-lab/MSP-Podcast.html) (v1.7). The model was pruned from 24 to 12 transformer layers before fine-tuning. An [ONNX](https://onnx.ai/") export of the model is available from [doi:10.5281/zenodo.6221127](https://zenodo.org/record/6221127). Further details are given in the associated [paper](https://arxiv.org/abs/2203.07378) and [tutorial](https://github.com/audeering/w2v2-how-to).
20
+
21
+ # Usage
22
+
23
+ ```python
24
+ import numpy as np
25
+ import torch
26
+ import torch.nn as nn
27
+ from transformers import Wav2Vec2Processor
28
+ from transformers.models.wav2vec2.modeling_wav2vec2 import (
29
+ Wav2Vec2Model,
30
+ Wav2Vec2PreTrainedModel,
31
+ )
32
+
33
+
34
+ class RegressionHead(nn.Module):
35
+ r"""Classification head."""
36
+
37
+ def __init__(self, config):
38
+
39
+ super().__init__()
40
+
41
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
42
+ self.dropout = nn.Dropout(config.final_dropout)
43
+ self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
44
+
45
+ def forward(self, features, **kwargs):
46
+
47
+ x = features
48
+ x = self.dropout(x)
49
+ x = self.dense(x)
50
+ x = torch.tanh(x)
51
+ x = self.dropout(x)
52
+ x = self.out_proj(x)
53
+
54
+ return x
55
+
56
+
57
+ class EmotionModel(Wav2Vec2PreTrainedModel):
58
+ r"""Speech emotion classifier."""
59
+
60
+ def __init__(self, config):
61
+
62
+ super().__init__(config)
63
+
64
+ self.config = config
65
+ self.wav2vec2 = Wav2Vec2Model(config)
66
+ self.classifier = RegressionHead(config)
67
+ self.init_weights()
68
+
69
+ def forward(
70
+ self,
71
+ input_values,
72
+ ):
73
+
74
+ outputs = self.wav2vec2(input_values)
75
+ hidden_states = outputs[0]
76
+ hidden_states = torch.mean(hidden_states, dim=1)
77
+ logits = self.classifier(hidden_states)
78
+
79
+ return hidden_states, logits
80
+
81
+
82
+
83
+ # load model from hub
84
+ device = 'cpu'
85
+ model_name = 'audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim'
86
+ processor = Wav2Vec2Processor.from_pretrained(model_name)
87
+ model = EmotionModel.from_pretrained(model_name)
88
+
89
+ # dummy signal
90
+ sampling_rate = 16000
91
+ signal = np.zeros((1, sampling_rate), dtype=np.float32)
92
+
93
+
94
+ def process_func(
95
+ x: np.ndarray,
96
+ sampling_rate: int,
97
+ embeddings: bool = False,
98
+ ) -> np.ndarray:
99
+ r"""Predict emotions or extract embeddings from raw audio signal."""
100
+
101
+ # run through processor to normalize signal
102
+ # always returns a batch, so we just get the first entry
103
+ # then we put it on the device
104
+ y = processor(x, sampling_rate=sampling_rate)
105
+ y = y['input_values'][0]
106
+ y = y.reshape(1, -1)
107
+ y = torch.from_numpy(y).to(device)
108
+
109
+ # run through model
110
+ with torch.no_grad():
111
+ y = model(y)[0 if embeddings else 1]
112
+
113
+ # convert to numpy
114
+ y = y.detach().cpu().numpy()
115
+
116
+ return y
117
+
118
+
119
+ print(process_func(signal, sampling_rate))
120
+ # Arousal dominance valence
121
+ # [[0.5460754 0.6062266 0.40431657]]
122
+
123
+ print(process_func(signal, sampling_rate, embeddings=True))
124
+ # Pooled hidden states of last transformer layer
125
+ # [[-0.00752167 0.0065819 -0.00746342 ... 0.00663632 0.00848748
126
+ # 0.00599211]]
127
+ ```
emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim/config.json ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "torch",
3
+ "activation_dropout": 0.1,
4
+ "adapter_kernel_size": 3,
5
+ "adapter_stride": 2,
6
+ "add_adapter": false,
7
+ "apply_spec_augment": true,
8
+ "architectures": [
9
+ "Wav2Vec2ForSpeechClassification"
10
+ ],
11
+ "attention_dropout": 0.1,
12
+ "bos_token_id": 1,
13
+ "classifier_proj_size": 256,
14
+ "codevector_dim": 768,
15
+ "contrastive_logits_temperature": 0.1,
16
+ "conv_bias": true,
17
+ "conv_dim": [
18
+ 512,
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512
25
+ ],
26
+ "conv_kernel": [
27
+ 10,
28
+ 3,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 2,
33
+ 2
34
+ ],
35
+ "conv_stride": [
36
+ 5,
37
+ 2,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2
43
+ ],
44
+ "ctc_loss_reduction": "sum",
45
+ "ctc_zero_infinity": false,
46
+ "diversity_loss_weight": 0.1,
47
+ "do_stable_layer_norm": true,
48
+ "eos_token_id": 2,
49
+ "feat_extract_activation": "gelu",
50
+ "feat_extract_dropout": 0.0,
51
+ "feat_extract_norm": "layer",
52
+ "feat_proj_dropout": 0.1,
53
+ "feat_quantizer_dropout": 0.0,
54
+ "final_dropout": 0.1,
55
+ "finetuning_task": "wav2vec2_reg",
56
+ "gradient_checkpointing": false,
57
+ "hidden_act": "gelu",
58
+ "hidden_dropout": 0.1,
59
+ "hidden_dropout_prob": 0.1,
60
+ "hidden_size": 1024,
61
+ "id2label": {
62
+ "0": "arousal",
63
+ "1": "dominance",
64
+ "2": "valence"
65
+ },
66
+ "initializer_range": 0.02,
67
+ "intermediate_size": 4096,
68
+ "label2id": {
69
+ "arousal": 0,
70
+ "dominance": 1,
71
+ "valence": 2
72
+ },
73
+ "layer_norm_eps": 1e-05,
74
+ "layerdrop": 0.1,
75
+ "mask_feature_length": 10,
76
+ "mask_feature_min_masks": 0,
77
+ "mask_feature_prob": 0.0,
78
+ "mask_time_length": 10,
79
+ "mask_time_min_masks": 2,
80
+ "mask_time_prob": 0.05,
81
+ "model_type": "wav2vec2",
82
+ "num_adapter_layers": 3,
83
+ "num_attention_heads": 16,
84
+ "num_codevector_groups": 2,
85
+ "num_codevectors_per_group": 320,
86
+ "num_conv_pos_embedding_groups": 16,
87
+ "num_conv_pos_embeddings": 128,
88
+ "num_feat_extract_layers": 7,
89
+ "num_hidden_layers": 12,
90
+ "num_negatives": 100,
91
+ "output_hidden_size": 1024,
92
+ "pad_token_id": 0,
93
+ "pooling_mode": "mean",
94
+ "problem_type": "regression",
95
+ "proj_codevector_dim": 768,
96
+ "tdnn_dilation": [
97
+ 1,
98
+ 2,
99
+ 3,
100
+ 1,
101
+ 1
102
+ ],
103
+ "tdnn_dim": [
104
+ 512,
105
+ 512,
106
+ 512,
107
+ 512,
108
+ 1500
109
+ ],
110
+ "tdnn_kernel": [
111
+ 5,
112
+ 3,
113
+ 3,
114
+ 1,
115
+ 1
116
+ ],
117
+ "torch_dtype": "float32",
118
+ "transformers_version": "4.17.0.dev0",
119
+ "use_weighted_layer_sum": false,
120
+ "vocab_size": null,
121
+ "xvector_output_dim": 512
122
+ }
emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim/preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0.0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:176d9d1ce29a8bddbab44068b9c1c194c51624c7f1812905e01355da58b18816
3
+ size 661436013
emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim/vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
infer.py CHANGED
@@ -6,16 +6,19 @@
6
  特殊版本说明:
7
  1.1.1-fix: 1.1.1版本训练的模型,但是在推理时使用dev的日语修复
8
  1.1.1-dev: dev开发
9
- 2.0:当前版本
10
  """
11
  import torch
12
  import commons
13
  from text import cleaned_text_to_sequence, get_bert
 
14
  from text.cleaner import clean_text
15
  import utils
16
 
17
  from models import SynthesizerTrn
18
  from text.symbols import symbols
 
 
19
  from oldVersion.V111.models import SynthesizerTrn as V111SynthesizerTrn
20
  from oldVersion.V111.text import symbols as V111symbols
21
  from oldVersion.V110.models import SynthesizerTrn as V110SynthesizerTrn
@@ -23,13 +26,16 @@ from oldVersion.V110.text import symbols as V110symbols
23
  from oldVersion.V101.models import SynthesizerTrn as V101SynthesizerTrn
24
  from oldVersion.V101.text import symbols as V101symbols
25
 
26
- from oldVersion import V111, V110, V101
27
 
28
  # 当前版本信息
29
  latest_version = "2.0"
30
 
31
  # 版本兼容
32
  SynthesizerTrnMap = {
 
 
 
33
  "1.1.1-fix": V111SynthesizerTrn,
34
  "1.1.1": V111SynthesizerTrn,
35
  "1.1": V110SynthesizerTrn,
@@ -40,6 +46,9 @@ SynthesizerTrnMap = {
40
  }
41
 
42
  symbolsMap = {
 
 
 
43
  "1.1.1-fix": V111symbols,
44
  "1.1.1": V111symbols,
45
  "1.1": V110symbols,
@@ -73,7 +82,7 @@ def get_net_g(model_path: str, version: str, device: str, hps):
73
  return net_g
74
 
75
 
76
- def get_text(text, language_str, hps, device):
77
  # 在此处实现当前版本的get_text
78
  norm_text, phone, tone, word2ph = clean_text(text, language_str)
79
  phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
@@ -85,25 +94,31 @@ def get_text(text, language_str, hps, device):
85
  for i in range(len(word2ph)):
86
  word2ph[i] = word2ph[i] * 2
87
  word2ph[0] += 1
88
- bert = get_bert(norm_text, word2ph, language_str, device)
89
  del word2ph
90
- assert bert.shape[-1] == len(phone), phone
91
 
92
  if language_str == "ZH":
93
- bert = bert
94
  ja_bert = torch.zeros(1024, len(phone))
95
  en_bert = torch.zeros(1024, len(phone))
96
  elif language_str == "JP":
97
  bert = torch.zeros(1024, len(phone))
98
- ja_bert = bert
99
  en_bert = torch.zeros(1024, len(phone))
100
  elif language_str == "EN":
101
  bert = torch.zeros(1024, len(phone))
102
  ja_bert = torch.zeros(1024, len(phone))
103
- en_bert = bert
104
  else:
105
  raise ValueError("language_str should be ZH, JP or EN")
106
 
 
 
 
 
 
 
107
  assert bert.shape[-1] == len(
108
  phone
109
  ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
@@ -111,7 +126,7 @@ def get_text(text, language_str, hps, device):
111
  phone = torch.LongTensor(phone)
112
  tone = torch.LongTensor(tone)
113
  language = torch.LongTensor(language)
114
- return bert, ja_bert, en_bert, phone, tone, language
115
 
116
 
117
  def infer(
@@ -125,9 +140,16 @@ def infer(
125
  hps,
126
  net_g,
127
  device,
 
 
 
 
128
  ):
129
- # 支持中日双语版本
130
  inferMap_V2 = {
 
 
 
131
  "1.1.1-fix": V111.infer_fix,
132
  "1.1.1": V111.infer,
133
  "1.1": V110.infer,
@@ -169,9 +191,122 @@ def infer(
169
  device,
170
  )
171
  # 在此处实现当前版本的推理
172
- bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
173
- text, language, hps, device
174
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
  with torch.no_grad():
176
  x_tst = phones.to(device).unsqueeze(0)
177
  tones = tones.to(device).unsqueeze(0)
@@ -179,6 +314,7 @@ def infer(
179
  bert = bert.to(device).unsqueeze(0)
180
  ja_bert = ja_bert.to(device).unsqueeze(0)
181
  en_bert = en_bert.to(device).unsqueeze(0)
 
182
  x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
183
  del phones
184
  speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
@@ -192,6 +328,7 @@ def infer(
192
  bert,
193
  ja_bert,
194
  en_bert,
 
195
  sdp_ratio=sdp_ratio,
196
  noise_scale=noise_scale,
197
  noise_scale_w=noise_scale_w,
@@ -201,5 +338,7 @@ def infer(
201
  .float()
202
  .numpy()
203
  )
204
- del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert
 
 
205
  return audio
 
6
  特殊版本说明:
7
  1.1.1-fix: 1.1.1版本训练的模型,但是在推理时使用dev的日语修复
8
  1.1.1-dev: dev开发
9
+ 2.1:当前版本
10
  """
11
  import torch
12
  import commons
13
  from text import cleaned_text_to_sequence, get_bert
14
+ from emo_gen import get_emo
15
  from text.cleaner import clean_text
16
  import utils
17
 
18
  from models import SynthesizerTrn
19
  from text.symbols import symbols
20
+ from oldVersion.V200.models import SynthesizerTrn as V200SynthesizerTrn
21
+ from oldVersion.V200.text import symbols as V200symbols
22
  from oldVersion.V111.models import SynthesizerTrn as V111SynthesizerTrn
23
  from oldVersion.V111.text import symbols as V111symbols
24
  from oldVersion.V110.models import SynthesizerTrn as V110SynthesizerTrn
 
26
  from oldVersion.V101.models import SynthesizerTrn as V101SynthesizerTrn
27
  from oldVersion.V101.text import symbols as V101symbols
28
 
29
+ from oldVersion import V111, V110, V101, V200
30
 
31
  # 当前版本信息
32
  latest_version = "2.0"
33
 
34
  # 版本兼容
35
  SynthesizerTrnMap = {
36
+ "2.0.2-fix": V200SynthesizerTrn,
37
+ "2.0.1": V200SynthesizerTrn,
38
+ "2.0": V200SynthesizerTrn,
39
  "1.1.1-fix": V111SynthesizerTrn,
40
  "1.1.1": V111SynthesizerTrn,
41
  "1.1": V110SynthesizerTrn,
 
46
  }
47
 
48
  symbolsMap = {
49
+ "2.0.2-fix": V200symbols,
50
+ "2.0.1": V200symbols,
51
+ "2.0": V200symbols,
52
  "1.1.1-fix": V111symbols,
53
  "1.1.1": V111symbols,
54
  "1.1": V110symbols,
 
82
  return net_g
83
 
84
 
85
+ def get_text(text, reference_audio, emotion, language_str, hps, device):
86
  # 在此处实现当前版本的get_text
87
  norm_text, phone, tone, word2ph = clean_text(text, language_str)
88
  phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
 
94
  for i in range(len(word2ph)):
95
  word2ph[i] = word2ph[i] * 2
96
  word2ph[0] += 1
97
+ bert_ori = get_bert(norm_text, word2ph, language_str, device)
98
  del word2ph
99
+ assert bert_ori.shape[-1] == len(phone), phone
100
 
101
  if language_str == "ZH":
102
+ bert = bert_ori
103
  ja_bert = torch.zeros(1024, len(phone))
104
  en_bert = torch.zeros(1024, len(phone))
105
  elif language_str == "JP":
106
  bert = torch.zeros(1024, len(phone))
107
+ ja_bert = bert_ori
108
  en_bert = torch.zeros(1024, len(phone))
109
  elif language_str == "EN":
110
  bert = torch.zeros(1024, len(phone))
111
  ja_bert = torch.zeros(1024, len(phone))
112
+ en_bert = bert_ori
113
  else:
114
  raise ValueError("language_str should be ZH, JP or EN")
115
 
116
+ emo = (
117
+ torch.from_numpy(get_emo(reference_audio))
118
+ if reference_audio
119
+ else torch.Tensor([emotion])
120
+ )
121
+
122
  assert bert.shape[-1] == len(
123
  phone
124
  ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
 
126
  phone = torch.LongTensor(phone)
127
  tone = torch.LongTensor(tone)
128
  language = torch.LongTensor(language)
129
+ return bert, ja_bert, en_bert, emo, phone, tone, language
130
 
131
 
132
  def infer(
 
140
  hps,
141
  net_g,
142
  device,
143
+ reference_audio=None,
144
+ emotion=None,
145
+ skip_start=False,
146
+ skip_end=False,
147
  ):
148
+ # 支持中日英三语版本
149
  inferMap_V2 = {
150
+ "2.0.2-fix": V200.infer,
151
+ "2.0.1": V200.infer,
152
+ "2.0": V200.infer,
153
  "1.1.1-fix": V111.infer_fix,
154
  "1.1.1": V111.infer,
155
  "1.1": V110.infer,
 
191
  device,
192
  )
193
  # 在此处实现当前版本的推理
194
+ bert, ja_bert, en_bert, emo, phones, tones, lang_ids = get_text(
195
+ text, reference_audio, emotion, language, hps, device
196
  )
197
+ if skip_start:
198
+ phones = phones[1:]
199
+ tones = tones[1:]
200
+ lang_ids = lang_ids[1:]
201
+ bert = bert[:, 1:]
202
+ ja_bert = ja_bert[:, 1:]
203
+ en_bert = en_bert[:, 1:]
204
+ if skip_end:
205
+ phones = phones[:-1]
206
+ tones = tones[:-1]
207
+ lang_ids = lang_ids[:-1]
208
+ bert = bert[:, :-1]
209
+ ja_bert = ja_bert[:, :-1]
210
+ en_bert = en_bert[:, :-1]
211
+ with torch.no_grad():
212
+ x_tst = phones.to(device).unsqueeze(0)
213
+ tones = tones.to(device).unsqueeze(0)
214
+ lang_ids = lang_ids.to(device).unsqueeze(0)
215
+ bert = bert.to(device).unsqueeze(0)
216
+ ja_bert = ja_bert.to(device).unsqueeze(0)
217
+ en_bert = en_bert.to(device).unsqueeze(0)
218
+ x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
219
+ emo = emo.to(device).unsqueeze(0)
220
+ del phones
221
+ speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
222
+ audio = (
223
+ net_g.infer(
224
+ x_tst,
225
+ x_tst_lengths,
226
+ speakers,
227
+ tones,
228
+ lang_ids,
229
+ bert,
230
+ ja_bert,
231
+ en_bert,
232
+ emo,
233
+ sdp_ratio=sdp_ratio,
234
+ noise_scale=noise_scale,
235
+ noise_scale_w=noise_scale_w,
236
+ length_scale=length_scale,
237
+ )[0][0, 0]
238
+ .data.cpu()
239
+ .float()
240
+ .numpy()
241
+ )
242
+ del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, emo
243
+ if torch.cuda.is_available():
244
+ torch.cuda.empty_cache()
245
+ return audio
246
+
247
+
248
+ def infer_multilang(
249
+ text,
250
+ sdp_ratio,
251
+ noise_scale,
252
+ noise_scale_w,
253
+ length_scale,
254
+ sid,
255
+ language,
256
+ hps,
257
+ net_g,
258
+ device,
259
+ reference_audio=None,
260
+ emotion=None,
261
+ skip_start=False,
262
+ skip_end=False,
263
+ ):
264
+ bert, ja_bert, en_bert, emo, phones, tones, lang_ids = [], [], [], [], [], [], []
265
+ # bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
266
+ # text, language, hps, device
267
+ # )
268
+ for idx, (txt, lang) in enumerate(zip(text, language)):
269
+ skip_start = (idx != 0) or (skip_start and idx == 0)
270
+ skip_end = (idx != len(text) - 1) or (skip_end and idx == len(text) - 1)
271
+ (
272
+ temp_bert,
273
+ temp_ja_bert,
274
+ temp_en_bert,
275
+ temp_emo,
276
+ temp_phones,
277
+ temp_tones,
278
+ temp_lang_ids,
279
+ ) = get_text(txt, ref, emotion, language, hps, device)
280
+ if skip_start:
281
+ temp_bert = temp_bert[:, 1:]
282
+ temp_ja_bert = temp_ja_bert[:, 1:]
283
+ temp_en_bert = temp_en_bert[:, 1:]
284
+ temp_emo = temp_emo[:, 1:]
285
+ temp_phones = temp_phones[1:]
286
+ temp_tones = temp_tones[1:]
287
+ temp_lang_ids = temp_lang_ids[1:]
288
+ if skip_end:
289
+ temp_bert = temp_bert[:, :-1]
290
+ temp_ja_bert = temp_ja_bert[:, :-1]
291
+ temp_en_bert = temp_en_bert[:, :-1]
292
+ temp_emo = temp_emo[:, :-1]
293
+ temp_phones = temp_phones[:-1]
294
+ temp_tones = temp_tones[:-1]
295
+ temp_lang_ids = temp_lang_ids[:-1]
296
+ bert.append(temp_bert)
297
+ ja_bert.append(temp_ja_bert)
298
+ en_bert.append(temp_en_bert)
299
+ emo.append(temp_emo)
300
+ phones.append(temp_phones)
301
+ tones.append(temp_tones)
302
+ lang_ids.append(temp_lang_ids)
303
+ bert = torch.concatenate(bert, dim=1)
304
+ ja_bert = torch.concatenate(ja_bert, dim=1)
305
+ en_bert = torch.concatenate(en_bert, dim=1)
306
+ emo = torch.concatenate(emo, dim=1)
307
+ phones = torch.concatenate(phones, dim=0)
308
+ tones = torch.concatenate(tones, dim=0)
309
+ lang_ids = torch.concatenate(lang_ids, dim=0)
310
  with torch.no_grad():
311
  x_tst = phones.to(device).unsqueeze(0)
312
  tones = tones.to(device).unsqueeze(0)
 
314
  bert = bert.to(device).unsqueeze(0)
315
  ja_bert = ja_bert.to(device).unsqueeze(0)
316
  en_bert = en_bert.to(device).unsqueeze(0)
317
+ emo = emo.to(device).unsqueeze(0)
318
  x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
319
  del phones
320
  speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
 
328
  bert,
329
  ja_bert,
330
  en_bert,
331
+ emo,
332
  sdp_ratio=sdp_ratio,
333
  noise_scale=noise_scale,
334
  noise_scale_w=noise_scale_w,
 
338
  .float()
339
  .numpy()
340
  )
341
+ del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, emo
342
+ if torch.cuda.is_available():
343
+ torch.cuda.empty_cache()
344
  return audio
models.py CHANGED
@@ -10,6 +10,7 @@ import monotonic_align
10
 
11
  from torch.nn import Conv1d, ConvTranspose1d, Conv2d
12
  from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
 
13
 
14
  from commons import init_weights, get_padding
15
  from text import symbols, num_tones, num_languages
@@ -321,6 +322,7 @@ class TextEncoder(nn.Module):
321
  n_layers,
322
  kernel_size,
323
  p_dropout,
 
324
  gin_channels=0,
325
  ):
326
  super().__init__()
@@ -342,6 +344,18 @@ class TextEncoder(nn.Module):
342
  self.bert_proj = nn.Conv1d(1024, hidden_channels, 1)
343
  self.ja_bert_proj = nn.Conv1d(1024, hidden_channels, 1)
344
  self.en_bert_proj = nn.Conv1d(1024, hidden_channels, 1)
 
 
 
 
 
 
 
 
 
 
 
 
345
 
346
  self.encoder = attentions.Encoder(
347
  hidden_channels,
@@ -354,10 +368,33 @@ class TextEncoder(nn.Module):
354
  )
355
  self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
356
 
357
- def forward(self, x, x_lengths, tone, language, bert, ja_bert, en_bert, g=None):
 
 
 
358
  bert_emb = self.bert_proj(bert).transpose(1, 2)
359
  ja_bert_emb = self.ja_bert_proj(ja_bert).transpose(1, 2)
360
  en_bert_emb = self.en_bert_proj(en_bert).transpose(1, 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361
  x = (
362
  self.emb(x)
363
  + self.tone_emb(tone)
@@ -365,6 +402,7 @@ class TextEncoder(nn.Module):
365
  + bert_emb
366
  + ja_bert_emb
367
  + en_bert_emb
 
368
  ) * math.sqrt(
369
  self.hidden_channels
370
  ) # [b, t, h]
@@ -377,7 +415,7 @@ class TextEncoder(nn.Module):
377
  stats = self.proj(x) * x_mask
378
 
379
  m, logs = torch.split(stats, self.out_channels, dim=1)
380
- return x, m, logs, x_mask
381
 
382
 
383
  class ResidualCouplingBlock(nn.Module):
@@ -810,6 +848,7 @@ class SynthesizerTrn(nn.Module):
810
  n_layers,
811
  kernel_size,
812
  p_dropout,
 
813
  gin_channels=self.enc_gin_channels,
814
  )
815
  self.dec = Generator(
@@ -877,13 +916,14 @@ class SynthesizerTrn(nn.Module):
877
  bert,
878
  ja_bert,
879
  en_bert,
 
880
  ):
881
  if self.n_speakers > 0:
882
  g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
883
  else:
884
  g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
885
- x, m_p, logs_p, x_mask = self.enc_p(
886
- x, x_lengths, tone, language, bert, ja_bert, en_bert, g=g
887
  )
888
  z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
889
  z_p = self.flow(z, y_mask, g=g)
@@ -949,6 +989,7 @@ class SynthesizerTrn(nn.Module):
949
  y_mask,
950
  (z, z_p, m_p, logs_p, m_q, logs_q),
951
  (x, logw, logw_),
 
952
  )
953
 
954
  def infer(
@@ -961,6 +1002,7 @@ class SynthesizerTrn(nn.Module):
961
  bert,
962
  ja_bert,
963
  en_bert,
 
964
  noise_scale=0.667,
965
  length_scale=1,
966
  noise_scale_w=0.8,
@@ -974,8 +1016,8 @@ class SynthesizerTrn(nn.Module):
974
  g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
975
  else:
976
  g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
977
- x, m_p, logs_p, x_mask = self.enc_p(
978
- x, x_lengths, tone, language, bert, ja_bert, en_bert, g=g
979
  )
980
  logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * (
981
  sdp_ratio
 
10
 
11
  from torch.nn import Conv1d, ConvTranspose1d, Conv2d
12
  from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
13
+ from vector_quantize_pytorch import VectorQuantize
14
 
15
  from commons import init_weights, get_padding
16
  from text import symbols, num_tones, num_languages
 
322
  n_layers,
323
  kernel_size,
324
  p_dropout,
325
+ n_speakers,
326
  gin_channels=0,
327
  ):
328
  super().__init__()
 
344
  self.bert_proj = nn.Conv1d(1024, hidden_channels, 1)
345
  self.ja_bert_proj = nn.Conv1d(1024, hidden_channels, 1)
346
  self.en_bert_proj = nn.Conv1d(1024, hidden_channels, 1)
347
+ self.emo_proj = nn.Linear(1024, 1024)
348
+ self.emo_quantizer = [
349
+ VectorQuantize(
350
+ dim=1024,
351
+ codebook_size=10,
352
+ decay=0.8,
353
+ commitment_weight=1.0,
354
+ learnable_codebook=True,
355
+ ema_update=False,
356
+ )
357
+ ] * n_speakers
358
+ self.emo_q_proj = nn.Linear(1024, hidden_channels)
359
 
360
  self.encoder = attentions.Encoder(
361
  hidden_channels,
 
368
  )
369
  self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
370
 
371
+ def forward(
372
+ self, x, x_lengths, tone, language, bert, ja_bert, en_bert, emo, sid, g=None
373
+ ):
374
+ sid = sid.cpu()
375
  bert_emb = self.bert_proj(bert).transpose(1, 2)
376
  ja_bert_emb = self.ja_bert_proj(ja_bert).transpose(1, 2)
377
  en_bert_emb = self.en_bert_proj(en_bert).transpose(1, 2)
378
+ if emo.size(-1) == 1024:
379
+ emo_emb = self.emo_proj(emo.unsqueeze(1))
380
+ emo_commit_loss = torch.zeros(1)
381
+ emo_emb_ = []
382
+ for i in range(emo_emb.size(0)):
383
+ temp_emo_emb, _, temp_emo_commit_loss = self.emo_quantizer[sid[i]](
384
+ emo_emb[i].unsqueeze(0).cpu()
385
+ )
386
+ emo_commit_loss += temp_emo_commit_loss
387
+ emo_emb_.append(temp_emo_emb)
388
+ emo_emb = torch.cat(emo_emb_, dim=0).to(emo_emb.device)
389
+ emo_commit_loss = emo_commit_loss.to(emo_emb.device)
390
+ else:
391
+ emo_emb = (
392
+ self.emo_quantizer[sid[0]]
393
+ .get_output_from_indices(emo.to(torch.int).cpu())
394
+ .unsqueeze(0)
395
+ .to(emo.device)
396
+ )
397
+ emo_commit_loss = torch.zeros(1)
398
  x = (
399
  self.emb(x)
400
  + self.tone_emb(tone)
 
402
  + bert_emb
403
  + ja_bert_emb
404
  + en_bert_emb
405
+ + self.emo_q_proj(emo_emb)
406
  ) * math.sqrt(
407
  self.hidden_channels
408
  ) # [b, t, h]
 
415
  stats = self.proj(x) * x_mask
416
 
417
  m, logs = torch.split(stats, self.out_channels, dim=1)
418
+ return x, m, logs, x_mask, emo_commit_loss
419
 
420
 
421
  class ResidualCouplingBlock(nn.Module):
 
848
  n_layers,
849
  kernel_size,
850
  p_dropout,
851
+ self.n_speakers,
852
  gin_channels=self.enc_gin_channels,
853
  )
854
  self.dec = Generator(
 
916
  bert,
917
  ja_bert,
918
  en_bert,
919
+ emo=None,
920
  ):
921
  if self.n_speakers > 0:
922
  g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
923
  else:
924
  g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
925
+ x, m_p, logs_p, x_mask, loss_commit = self.enc_p(
926
+ x, x_lengths, tone, language, bert, ja_bert, en_bert, emo, sid, g=g
927
  )
928
  z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
929
  z_p = self.flow(z, y_mask, g=g)
 
989
  y_mask,
990
  (z, z_p, m_p, logs_p, m_q, logs_q),
991
  (x, logw, logw_),
992
+ loss_commit,
993
  )
994
 
995
  def infer(
 
1002
  bert,
1003
  ja_bert,
1004
  en_bert,
1005
+ emo=None,
1006
  noise_scale=0.667,
1007
  length_scale=1,
1008
  noise_scale_w=0.8,
 
1016
  g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
1017
  else:
1018
  g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
1019
+ x, m_p, logs_p, x_mask, _ = self.enc_p(
1020
+ x, x_lengths, tone, language, bert, ja_bert, en_bert, emo, sid, g=g
1021
  )
1022
  logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * (
1023
  sdp_ratio
oldVersion/V101/__init__.py CHANGED
@@ -70,4 +70,6 @@ def infer(
70
  .numpy()
71
  )
72
  del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
 
 
73
  return audio
 
70
  .numpy()
71
  )
72
  del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
73
+ if torch.cuda.is_available():
74
+ torch.cuda.empty_cache()
75
  return audio
oldVersion/V101/__pycache__/__init__.cpython-39.pyc CHANGED
Binary files a/oldVersion/V101/__pycache__/__init__.cpython-39.pyc and b/oldVersion/V101/__pycache__/__init__.cpython-39.pyc differ
 
oldVersion/V101/__pycache__/models.cpython-39.pyc CHANGED
Binary files a/oldVersion/V101/__pycache__/models.cpython-39.pyc and b/oldVersion/V101/__pycache__/models.cpython-39.pyc differ
 
oldVersion/V101/text/__pycache__/__init__.cpython-39.pyc CHANGED
Binary files a/oldVersion/V101/text/__pycache__/__init__.cpython-39.pyc and b/oldVersion/V101/text/__pycache__/__init__.cpython-39.pyc differ
 
oldVersion/V101/text/__pycache__/chinese.cpython-39.pyc CHANGED
Binary files a/oldVersion/V101/text/__pycache__/chinese.cpython-39.pyc and b/oldVersion/V101/text/__pycache__/chinese.cpython-39.pyc differ
 
oldVersion/V101/text/__pycache__/cleaner.cpython-39.pyc CHANGED
Binary files a/oldVersion/V101/text/__pycache__/cleaner.cpython-39.pyc and b/oldVersion/V101/text/__pycache__/cleaner.cpython-39.pyc differ
 
oldVersion/V101/text/__pycache__/symbols.cpython-39.pyc CHANGED
Binary files a/oldVersion/V101/text/__pycache__/symbols.cpython-39.pyc and b/oldVersion/V101/text/__pycache__/symbols.cpython-39.pyc differ
 
oldVersion/V101/text/__pycache__/tone_sandhi.cpython-39.pyc CHANGED
Binary files a/oldVersion/V101/text/__pycache__/tone_sandhi.cpython-39.pyc and b/oldVersion/V101/text/__pycache__/tone_sandhi.cpython-39.pyc differ
 
oldVersion/V110/__pycache__/__init__.cpython-39.pyc CHANGED
Binary files a/oldVersion/V110/__pycache__/__init__.cpython-39.pyc and b/oldVersion/V110/__pycache__/__init__.cpython-39.pyc differ
 
oldVersion/V110/__pycache__/models.cpython-39.pyc CHANGED
Binary files a/oldVersion/V110/__pycache__/models.cpython-39.pyc and b/oldVersion/V110/__pycache__/models.cpython-39.pyc differ
 
oldVersion/V110/text/__pycache__/__init__.cpython-39.pyc CHANGED
Binary files a/oldVersion/V110/text/__pycache__/__init__.cpython-39.pyc and b/oldVersion/V110/text/__pycache__/__init__.cpython-39.pyc differ
 
oldVersion/V110/text/__pycache__/chinese.cpython-39.pyc CHANGED
Binary files a/oldVersion/V110/text/__pycache__/chinese.cpython-39.pyc and b/oldVersion/V110/text/__pycache__/chinese.cpython-39.pyc differ
 
oldVersion/V110/text/__pycache__/cleaner.cpython-39.pyc CHANGED
Binary files a/oldVersion/V110/text/__pycache__/cleaner.cpython-39.pyc and b/oldVersion/V110/text/__pycache__/cleaner.cpython-39.pyc differ
 
oldVersion/V110/text/__pycache__/japanese.cpython-39.pyc CHANGED
Binary files a/oldVersion/V110/text/__pycache__/japanese.cpython-39.pyc and b/oldVersion/V110/text/__pycache__/japanese.cpython-39.pyc differ
 
oldVersion/V110/text/__pycache__/symbols.cpython-39.pyc CHANGED
Binary files a/oldVersion/V110/text/__pycache__/symbols.cpython-39.pyc and b/oldVersion/V110/text/__pycache__/symbols.cpython-39.pyc differ
 
oldVersion/V110/text/__pycache__/tone_sandhi.cpython-39.pyc CHANGED
Binary files a/oldVersion/V110/text/__pycache__/tone_sandhi.cpython-39.pyc and b/oldVersion/V110/text/__pycache__/tone_sandhi.cpython-39.pyc differ
 
oldVersion/V111/__pycache__/__init__.cpython-39.pyc CHANGED
Binary files a/oldVersion/V111/__pycache__/__init__.cpython-39.pyc and b/oldVersion/V111/__pycache__/__init__.cpython-39.pyc differ
 
oldVersion/V111/__pycache__/models.cpython-39.pyc CHANGED
Binary files a/oldVersion/V111/__pycache__/models.cpython-39.pyc and b/oldVersion/V111/__pycache__/models.cpython-39.pyc differ
 
oldVersion/V111/text/__pycache__/__init__.cpython-39.pyc CHANGED
Binary files a/oldVersion/V111/text/__pycache__/__init__.cpython-39.pyc and b/oldVersion/V111/text/__pycache__/__init__.cpython-39.pyc differ
 
oldVersion/V111/text/__pycache__/chinese.cpython-39.pyc CHANGED
Binary files a/oldVersion/V111/text/__pycache__/chinese.cpython-39.pyc and b/oldVersion/V111/text/__pycache__/chinese.cpython-39.pyc differ
 
oldVersion/V111/text/__pycache__/cleaner.cpython-39.pyc CHANGED
Binary files a/oldVersion/V111/text/__pycache__/cleaner.cpython-39.pyc and b/oldVersion/V111/text/__pycache__/cleaner.cpython-39.pyc differ
 
oldVersion/V111/text/__pycache__/japanese.cpython-39.pyc CHANGED
Binary files a/oldVersion/V111/text/__pycache__/japanese.cpython-39.pyc and b/oldVersion/V111/text/__pycache__/japanese.cpython-39.pyc differ
 
oldVersion/V111/text/__pycache__/symbols.cpython-39.pyc CHANGED
Binary files a/oldVersion/V111/text/__pycache__/symbols.cpython-39.pyc and b/oldVersion/V111/text/__pycache__/symbols.cpython-39.pyc differ
 
oldVersion/V111/text/__pycache__/tone_sandhi.cpython-39.pyc CHANGED
Binary files a/oldVersion/V111/text/__pycache__/tone_sandhi.cpython-39.pyc and b/oldVersion/V111/text/__pycache__/tone_sandhi.cpython-39.pyc differ
 
oldVersion/V111/text/fix/__pycache__/__init__.cpython-39.pyc CHANGED
Binary files a/oldVersion/V111/text/fix/__pycache__/__init__.cpython-39.pyc and b/oldVersion/V111/text/fix/__pycache__/__init__.cpython-39.pyc differ