Porjaz commited on
Commit
0f3bb36
·
verified ·
1 Parent(s): ea700fc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -21,7 +21,7 @@ def clean_up_memory():
21
  gc.collect()
22
  torch.cuda.empty_cache()
23
 
24
- @spaces.GPU
25
  def recap_sentence(string):
26
  # Restore capitalization and punctuation using the model
27
  inputs = recap_tokenizer(["restore capitalization and punctuation: " + string], return_tensors="pt", padding=True).to(device)
@@ -29,15 +29,15 @@ def recap_sentence(string):
29
  recap_result = recap_tokenizer.decode(outputs, skip_special_tokens=True)
30
  return recap_result
31
 
32
- @spaces.GPU
33
  def return_prediction_w2v2(mic=None, file=None, device=device):
34
  if mic is not None:
35
  waveform, sr = librosa.load(mic, sr=16000)
36
- waveform = waveform[:30*sr]
37
  w2v2_result = w2v2_classifier.classify_file_w2v2(waveform, device)
38
  elif file is not None:
39
  waveform, sr = librosa.load(file, sr=16000)
40
- waveform = waveform[:30*sr]
41
  w2v2_result = w2v2_classifier.classify_file_w2v2(waveform, device)
42
  else:
43
  return "You must either provide a mic recording or a file"
@@ -57,11 +57,11 @@ def return_prediction_w2v2(mic=None, file=None, device=device):
57
  def return_prediction_whisper(mic=None, file=None, device=device):
58
  if mic is not None:
59
  waveform, sr = librosa.load(mic, sr=16000)
60
- waveform = waveform[:30*sr]
61
  whisper_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
62
  elif file is not None:
63
  waveform, sr = librosa.load(file, sr=16000)
64
- waveform = waveform[:30*sr]
65
  whisper_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
66
  else:
67
  return "You must either provide a mic recording or a file"
@@ -83,7 +83,7 @@ def return_prediction_compare(mic=None, file=None, device=device):
83
  # mms_model.to(device)
84
  if mic is not None:
85
  waveform, sr = librosa.load(mic, sr=16000)
86
- waveform = waveform[:30*sr]
87
  whisper_mkd_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
88
  # result_generator_w2v2 = w2v2_classifier.classify_file_w2v2(mic, device)
89
  whisper_result = whisper_classifier.classify_file_whisper(waveform, pipe_whisper, device)
@@ -91,7 +91,7 @@ def return_prediction_compare(mic=None, file=None, device=device):
91
 
92
  elif file is not None:
93
  waveform, sr = librosa.load(file, sr=16000)
94
- waveform = waveform[:30*sr]
95
  whisper_mkd_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
96
  # result_generator_w2v2 = w2v2_classifier.classify_file_w2v2(file, device)
97
  whisper_result = whisper_classifier.classify_file_whisper(waveform, pipe_whisper, device)
 
21
  gc.collect()
22
  torch.cuda.empty_cache()
23
 
24
+ @spaces.GPU(duration=30)
25
  def recap_sentence(string):
26
  # Restore capitalization and punctuation using the model
27
  inputs = recap_tokenizer(["restore capitalization and punctuation: " + string], return_tensors="pt", padding=True).to(device)
 
29
  recap_result = recap_tokenizer.decode(outputs, skip_special_tokens=True)
30
  return recap_result
31
 
32
+
33
  def return_prediction_w2v2(mic=None, file=None, device=device):
34
  if mic is not None:
35
  waveform, sr = librosa.load(mic, sr=16000)
36
+ waveform = waveform[:120*sr]
37
  w2v2_result = w2v2_classifier.classify_file_w2v2(waveform, device)
38
  elif file is not None:
39
  waveform, sr = librosa.load(file, sr=16000)
40
+ waveform = waveform[:120*sr]
41
  w2v2_result = w2v2_classifier.classify_file_w2v2(waveform, device)
42
  else:
43
  return "You must either provide a mic recording or a file"
 
57
  def return_prediction_whisper(mic=None, file=None, device=device):
58
  if mic is not None:
59
  waveform, sr = librosa.load(mic, sr=16000)
60
+ waveform = waveform[:120*sr]
61
  whisper_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
62
  elif file is not None:
63
  waveform, sr = librosa.load(file, sr=16000)
64
+ waveform = waveform[:120*sr]
65
  whisper_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
66
  else:
67
  return "You must either provide a mic recording or a file"
 
83
  # mms_model.to(device)
84
  if mic is not None:
85
  waveform, sr = librosa.load(mic, sr=16000)
86
+ waveform = waveform[:120*sr]
87
  whisper_mkd_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
88
  # result_generator_w2v2 = w2v2_classifier.classify_file_w2v2(mic, device)
89
  whisper_result = whisper_classifier.classify_file_whisper(waveform, pipe_whisper, device)
 
91
 
92
  elif file is not None:
93
  waveform, sr = librosa.load(file, sr=16000)
94
+ waveform = waveform[:120*sr]
95
  whisper_mkd_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
96
  # result_generator_w2v2 = w2v2_classifier.classify_file_w2v2(file, device)
97
  whisper_result = whisper_classifier.classify_file_whisper(waveform, pipe_whisper, device)