Spaces:
Runtime error
Runtime error
File size: 12,537 Bytes
eb6ddbd 12afc5d eb6ddbd 12afc5d eb6ddbd 12afc5d eb6ddbd 12afc5d eb6ddbd 12afc5d eb6ddbd 12afc5d eb6ddbd 12afc5d eb6ddbd 12afc5d eb6ddbd 12afc5d eb6ddbd 12afc5d eb6ddbd 12afc5d eb6ddbd 12afc5d eb6ddbd 12afc5d eb6ddbd 12afc5d eb6ddbd 12afc5d eb6ddbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import os
import gradio as gr
from typing import List, Dict, Callable
import random
import google.generativeai as genai
from anthropic import Anthropic
import openai
from openai import OpenAI # Add explicit OpenAI import
def get_all_models():
"""Get all available models from the registries."""
return [
"SambaNova: Meta-Llama-3.2-1B-Instruct",
"SambaNova: Meta-Llama-3.2-3B-Instruct",
"SambaNova: Llama-3.2-11B-Vision-Instruct",
"SambaNova: Llama-3.2-90B-Vision-Instruct",
"SambaNova: Meta-Llama-3.1-8B-Instruct",
"SambaNova: Meta-Llama-3.1-70B-Instruct",
"SambaNova: Meta-Llama-3.1-405B-Instruct",
"Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct",
"Hyperbolic: meta-llama/Llama-3.2-3B-Instruct",
"Hyperbolic: meta-llama/Meta-Llama-3.1-8B-Instruct",
"Hyperbolic: meta-llama/Meta-Llama-3.1-70B-Instruct",
"Hyperbolic: meta-llama/Meta-Llama-3-70B-Instruct",
"Hyperbolic: NousResearch/Hermes-3-Llama-3.1-70B",
"Hyperbolic: Qwen/Qwen2.5-72B-Instruct",
"Hyperbolic: deepseek-ai/DeepSeek-V2.5",
"Hyperbolic: meta-llama/Meta-Llama-3.1-405B-Instruct",
]
def generate_discussion_prompt(original_question: str, previous_responses: List[str]) -> str:
"""Generate a prompt for models to discuss and build upon previous responses."""
prompt = f"""You are participating in a multi-AI discussion about this question: "{original_question}"
Previous responses from other AI models:
{chr(10).join(f"- {response}" for response in previous_responses)}
Please provide your perspective while:
1. Acknowledging key insights from previous responses
2. Adding any missing important points
3. Respectfully noting if you disagree with anything and explaining why
4. Building towards a complete answer
Keep your response focused and concise (max 3-4 paragraphs)."""
return prompt
def generate_consensus_prompt(original_question: str, discussion_history: List[str]) -> str:
"""Generate a prompt for final consensus building."""
return f"""Review this multi-AI discussion about: "{original_question}"
Discussion history:
{chr(10).join(discussion_history)}
As a final synthesizer, please:
1. Identify the key points where all models agreed
2. Explain how any disagreements were resolved
3. Present a clear, unified answer that represents our collective best understanding
4. Note any remaining uncertainties or caveats
Keep the final consensus concise but complete."""
def chat_with_openai(model: str, messages: List[Dict], api_key: str) -> str:
import openai
client = openai.OpenAI(api_key=api_key)
response = client.chat.completions.create(
model=model,
messages=messages
)
return response.choices[0].message.content
def chat_with_anthropic(messages: List[Dict], api_key: str) -> str:
"""Chat with Anthropic's Claude model."""
client = Anthropic(api_key=api_key)
response = client.messages.create(
model="claude-3-sonnet-20240229",
messages=messages,
max_tokens=1024
)
return response.content[0].text
def chat_with_gemini(messages: List[Dict], api_key: str) -> str:
"""Chat with Gemini Pro model."""
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-pro')
# Convert messages to Gemini format
gemini_messages = []
for msg in messages:
role = "user" if msg["role"] == "user" else "model"
gemini_messages.append({"role": role, "parts": [msg["content"]]})
response = model.generate_content([m["parts"][0] for m in gemini_messages])
return response.text
def chat_with_sambanova(messages: List[Dict], api_key: str, model_name: str = "Llama-3.2-90B-Vision-Instruct") -> str:
"""Chat with SambaNova's models using their OpenAI-compatible API."""
client = openai.OpenAI(
api_key=api_key,
base_url="https://api.sambanova.ai/v1",
)
response = client.chat.completions.create(
model=model_name, # Use the specific model name passed in
messages=messages,
temperature=0.1,
top_p=0.1
)
return response.choices[0].message.content
def chat_with_hyperbolic(messages: List[Dict], api_key: str, model_name: str = "Qwen/Qwen2.5-Coder-32B-Instruct") -> str:
"""Chat with Hyperbolic's models using their OpenAI-compatible API."""
client = OpenAI(
api_key=api_key,
base_url="https://api.hyperbolic.xyz/v1"
)
# Add system message to the start of the messages list
full_messages = [
{"role": "system", "content": "You are a helpful assistant. Be descriptive and clear."},
*messages
]
response = client.chat.completions.create(
model=model_name, # Use the specific model name passed in
messages=full_messages,
temperature=0.7,
max_tokens=1024,
)
return response.choices[0].message.content
def multi_model_consensus(
question: str,
selected_models: List[str],
rounds: int = 3,
progress: gr.Progress = gr.Progress()
) -> tuple[str, List[Dict]]:
if not selected_models:
return "Please select at least one model to chat with.", []
chat_history = []
discussion_history = []
# Initial responses
progress(0, desc="Getting initial responses...")
initial_responses = []
for i, model in enumerate(selected_models):
provider, model_name = model.split(": ", 1)
try:
if provider == "Anthropic":
api_key = os.getenv("ANTHROPIC_API_KEY")
response = chat_with_anthropic(
messages=[{"role": "user", "content": question}],
api_key=api_key
)
elif provider == "SambaNova":
api_key = os.getenv("SAMBANOVA_API_KEY")
response = chat_with_sambanova(
messages=[
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": question}
],
api_key=api_key
)
elif provider == "Hyperbolic": # Add Hyperbolic case
api_key = os.getenv("HYPERBOLIC_API_KEY")
response = chat_with_hyperbolic(
messages=[{"role": "user", "content": question}],
api_key=api_key
)
else: # Gemini
api_key = os.getenv("GEMINI_API_KEY")
response = chat_with_gemini(
messages=[{"role": "user", "content": question}],
api_key=api_key
)
initial_responses.append(f"{model}: {response}")
discussion_history.append(f"Initial response from {model}:\n{response}")
chat_history.append((f"Initial response from {model}", response))
except Exception as e:
chat_history.append((f"Error from {model}", str(e)))
# Discussion rounds
for round_num in range(rounds):
progress((round_num + 1) / (rounds + 2), desc=f"Discussion round {round_num + 1}...")
round_responses = []
random.shuffle(selected_models) # Randomize order each round
for model in selected_models:
provider, model_name = model.split(": ", 1)
try:
discussion_prompt = generate_discussion_prompt(question, discussion_history)
if provider == "Anthropic":
api_key = os.getenv("ANTHROPIC_API_KEY")
response = chat_with_anthropic(
messages=[{"role": "user", "content": discussion_prompt}],
api_key=api_key
)
elif provider == "SambaNova":
api_key = os.getenv("SAMBANOVA_API_KEY")
response = chat_with_sambanova(
messages=[
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": discussion_prompt}
],
api_key=api_key
)
elif provider == "Hyperbolic": # Add Hyperbolic case
api_key = os.getenv("HYPERBOLIC_API_KEY")
response = chat_with_hyperbolic(
messages=[{"role": "user", "content": discussion_prompt}],
api_key=api_key
)
else: # Gemini
api_key = os.getenv("GEMINI_API_KEY")
response = chat_with_gemini(
messages=[{"role": "user", "content": discussion_prompt}],
api_key=api_key
)
round_responses.append(f"{model}: {response}")
discussion_history.append(f"Round {round_num + 1} - {model}:\n{response}")
chat_history.append((f"Round {round_num + 1} - {model}", response))
except Exception as e:
chat_history.append((f"Error from {model} in round {round_num + 1}", str(e)))
# Final consensus
progress(0.9, desc="Building final consensus...")
model = selected_models[0]
provider, model_name = model.split(": ", 1)
try:
consensus_prompt = generate_consensus_prompt(question, discussion_history)
if provider == "Anthropic":
api_key = os.getenv("ANTHROPIC_API_KEY")
final_consensus = chat_with_anthropic(
messages=[{"role": "user", "content": consensus_prompt}],
api_key=api_key
)
elif provider == "SambaNova":
api_key = os.getenv("SAMBANOVA_API_KEY")
final_consensus = chat_with_sambanova(
messages=[
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": consensus_prompt}
],
api_key=api_key
)
elif provider == "Hyperbolic": # Add Hyperbolic case
api_key = os.getenv("HYPERBOLIC_API_KEY")
final_consensus = chat_with_hyperbolic(
messages=[{"role": "user", "content": consensus_prompt}],
api_key=api_key
)
else: # Gemini
api_key = os.getenv("GEMINI_API_KEY")
final_consensus = chat_with_gemini(
messages=[{"role": "user", "content": consensus_prompt}],
api_key=api_key
)
except Exception as e:
final_consensus = f"Error getting consensus from {model}: {str(e)}"
chat_history.append(("Final Consensus", final_consensus))
progress(1.0, desc="Done!")
return chat_history
with gr.Blocks() as demo:
gr.Markdown("# Experimental Multi-Model Consensus Chat")
gr.Markdown("""Select multiple models to collaborate on answering your question.
The models will discuss with each other and attempt to reach a consensus.
Maximum 3 models can be selected at once.""")
with gr.Row():
with gr.Column():
model_selector = gr.Dropdown(
choices=get_all_models(),
multiselect=True,
label="Select Models (max 3)",
info="Choose up to 3 models to participate in the discussion",
value=["SambaNova: Llama-3.2-90B-Vision-Instruct", "Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct"],
max_choices=3
)
rounds_slider = gr.Slider(
minimum=1,
maximum=2,
value=1,
step=1,
label="Discussion Rounds",
info="Number of rounds of discussion between models"
)
chatbot = gr.Chatbot(height=600, label="Multi-Model Discussion")
msg = gr.Textbox(label="Your Question", placeholder="Ask a question for the models to discuss...")
def respond(message, selected_models, rounds):
chat_history = multi_model_consensus(message, selected_models, rounds)
return chat_history
msg.submit(
respond,
[msg, model_selector, rounds_slider],
[chatbot],
api_name="consensus_chat"
)
if __name__ == "__main__":
demo.launch() |