Spaces:
Paused
Paused
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, logging | |
import gradio as gr | |
model_name = "microsoft/phi-2" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
trust_remote_code=True | |
) | |
model.config.use_cache = False | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
tokenizer.pad_token = tokenizer.eos_token | |
# Loading adapter (trained LORA weights) | |
# ckpt = '/content/drive/MyDrive/S27/results/checkpoint-500' | |
# model.load_adapter(ckpt) | |
adapter_path = 'checkpoint-500' | |
model.load_adapter(adapter_path) | |
def inference(prompt): | |
pipe = pipeline(task="text-generation",model=model,tokenizer=tokenizer,max_length=200) | |
result = pipe(f"<s>[INST] {prompt} [/INST]") | |
return result[0]['generated_text'] | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# Phi2 trained on OpenAssistant/oasst1 dataset | |
Start typing below to see the output. | |
""") | |
prompt = gr.Textbox(label="Prompt") | |
output = gr.Textbox(label="Output Box") | |
greet_btn = gr.Button("Generate") | |
greet_btn.click(fn=inference, inputs=prompt, outputs=output) | |
demo.launch(debug=True) |