Spaces:
Sleeping
Sleeping
import streamlit as st | |
from huggingface_hub import InferenceClient | |
# Access your Hugging Face token (stored as a secret in the environment) | |
hf_token = st.secrets["Hf_Token"] | |
# Initialize the Hugging Face Inference Client with the token | |
client = InferenceClient(token=hf_token) | |
# Streamlit App UI | |
st.title("LLM Model Inference with Streamlit") | |
# Input text box for user prompt | |
user_input = st.text_input("Enter a text prompt:", "") | |
# Dropdown for selecting between LLaMA 3 models | |
model_id = st.selectbox( | |
"Select a LLaMA model", | |
["meta-llama/Meta-Llama-3-2B", "meta-llama/Meta-Llama-3-3B"] # Replace with the correct model names | |
) | |
# Button to trigger the inference | |
if st.button("Generate Text"): | |
if user_input: | |
with st.spinner(f"Generating text using {model_id}..."): | |
# Perform inference using the selected model | |
response = client.text_generation(model=model_id, inputs=user_input) | |
st.success("Text generated!") | |
st.write(response) | |
else: | |
st.warning("Please enter a prompt to generate text.") | |