Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,33 @@
|
|
1 |
import streamlit as st
|
2 |
import transformers
|
3 |
import torch
|
|
|
|
|
|
|
4 |
|
5 |
HF_TOKEN=st.secrets["hf_token"]
|
6 |
# Load the model and pipeline
|
7 |
model_id = "meta-llama/Llama-3.2-11B-Vision"
|
|
|
|
|
|
|
8 |
|
9 |
# Set up the pipeline with the Hugging Face token
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
# Streamlit user interface
|
17 |
-
st.title("LLM Model Inference")
|
18 |
-
st.write(f"**Using model:** {model_id}")
|
19 |
-
input_text = st.text_input("Enter your prompt:")
|
20 |
-
|
21 |
-
if st.button("Generate"):
|
22 |
-
if input_text: # Check if the input is not empty
|
23 |
-
# Generate text using the pipeline
|
24 |
-
messages = [
|
25 |
-
{"role": "system", "content": "You are a question answering assistant."},
|
26 |
-
{"role": "user", "content": input_text}
|
27 |
-
]
|
28 |
-
response = pipeline(messages, max_new_tokens=30)
|
29 |
-
st.write("Generated Response:")
|
30 |
-
st.write(response[0]['generated_text'][-1]['content'])
|
31 |
-
else:
|
32 |
-
st.error("Please enter a prompt to generate text.")
|
33 |
|
34 |
|
|
|
1 |
import streamlit as st
|
2 |
import transformers
|
3 |
import torch
|
4 |
+
import requests
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
7 |
|
8 |
HF_TOKEN=st.secrets["hf_token"]
|
9 |
# Load the model and pipeline
|
10 |
model_id = "meta-llama/Llama-3.2-11B-Vision"
|
11 |
+
# Streamlit user interface
|
12 |
+
st.title("LLM Model Inference")
|
13 |
+
st.write(f"**Using model:** {model_id}")
|
14 |
|
15 |
# Set up the pipeline with the Hugging Face token
|
16 |
+
model = MllamaForConditionalGeneration.from_pretrained(
|
17 |
+
model_id,
|
18 |
+
torch_dtype=torch.bfloat16,
|
19 |
+
device_map="auto",
|
20 |
)
|
21 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
22 |
+
|
23 |
+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg"
|
24 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
25 |
+
|
26 |
+
prompt = "<|image|><|begin_of_text|>If I had to write a haiku for this one"
|
27 |
+
inputs = processor(image, prompt, return_tensors="pt").to(model.device)
|
28 |
+
|
29 |
+
output = model.generate(**inputs, max_new_tokens=30)
|
30 |
+
st.write(processor.decode(output[0]))
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
|