Spaces:
Sleeping
Sleeping
Madhuri123
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,52 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
import torch
|
4 |
-
import requests
|
5 |
from PIL import Image
|
6 |
-
|
7 |
-
import subprocess
|
8 |
-
subprocess.run(["pip", "install", "accelerate>=0.26.0"])
|
9 |
|
|
|
|
|
10 |
|
11 |
-
HF_TOKEN=st.secrets["hf_token"]
|
12 |
# Load the model and pipeline
|
13 |
model_id = "meta-llama/Llama-3.2-11B-Vision"
|
14 |
-
# Streamlit user interface
|
15 |
-
st.title("LLM Model Inference")
|
16 |
-
st.write(f"**Using model:** {model_id}")
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
)
|
24 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
25 |
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
prompt = "<|image|><|begin_of_text|>If I had to write a haiku for this one"
|
30 |
-
inputs = processor(image, prompt, return_tensors="pt").to(model.device)
|
31 |
|
32 |
-
output = model.generate(**inputs, max_new_tokens=30)
|
33 |
-
st.write(processor.decode(output[0]))
|
34 |
|
35 |
|
36 |
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline
|
|
|
|
|
3 |
from PIL import Image
|
4 |
+
import torch
|
|
|
|
|
5 |
|
6 |
+
# Load Hugging Face token
|
7 |
+
HF_TOKEN = st.secrets["hf_token"]
|
8 |
|
|
|
9 |
# Load the model and pipeline
|
10 |
model_id = "meta-llama/Llama-3.2-11B-Vision"
|
|
|
|
|
|
|
11 |
|
12 |
+
# Initialize pipeline
|
13 |
+
pipeline = pipeline(
|
14 |
+
"text-to-image-and-text", # Hypothetical task name for multimodal processing
|
15 |
+
model=model_id,
|
16 |
+
model_kwargs={"torch_dtype": torch.bfloat16, "use_auth_token": HF_TOKEN}
|
17 |
)
|
|
|
18 |
|
19 |
+
# Streamlit UI
|
20 |
+
st.title("Multimodal LLM Inference")
|
21 |
+
st.write(f"**Using model:** {model_id}")
|
22 |
+
|
23 |
+
# Text Input
|
24 |
+
input_text = st.text_input("Enter your prompt:")
|
25 |
+
|
26 |
+
# Image Input
|
27 |
+
uploaded_file = st.file_uploader("Upload an image:", type=["jpg", "png", "jpeg"])
|
28 |
+
|
29 |
+
if st.button("Generate"):
|
30 |
+
if input_text and uploaded_file:
|
31 |
+
# Process image
|
32 |
+
image = Image.open(uploaded_file)
|
33 |
+
|
34 |
+
# Prepare multimodal input
|
35 |
+
messages = [
|
36 |
+
{"role": "system", "content": "You are a multimodal assistant."},
|
37 |
+
{"role": "user", "content": input_text, "image": image}
|
38 |
+
]
|
39 |
+
|
40 |
+
# Generate response
|
41 |
+
response = pipeline(messages, max_new_tokens=30)
|
42 |
+
|
43 |
+
# Display results
|
44 |
+
st.write("Generated Response:")
|
45 |
+
st.write(response[0]['generated_text'][-1]['content']) # Assuming this structure
|
46 |
+
else:
|
47 |
+
st.error("Please enter a prompt and upload an image.")
|
48 |
|
|
|
|
|
49 |
|
|
|
|
|
50 |
|
51 |
|
52 |
|