File size: 1,549 Bytes
01c3c58 fa5913d 01c3c58 fa5913d 01c3c58 fa5913d e9f4ddd fa5913d 5f100b2 fa5913d 5f100b2 fa5913d 5f100b2 fa5913d 5f100b2 fa5913d 01c3c58 fa5913d 01c3c58 fa5913d 01c3c58 fa5913d 01c3c58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import gradio as gr
from transformers import pipeline
# Load the pre-trained model (cached for performance)
def load_model():
return pipeline('sentiment-analysis', model='cardiffnlp/twitter-roberta-base-sentiment')
sentiment_model = load_model()
# Define the function to analyze sentiment
def analyze_sentiment(user_input):
result = sentiment_model(user_input)[0]
sentiment = result['label'].lower() # Convert to lowercase for easier comparison
# Customize messages based on detected sentiment
if sentiment == 'negative':
return "Mood Detected: Negative π\n\nStay positive! π Remember, tough times don't last, but tough people do!"
elif sentiment == 'neutral':
return "Mood Detected: Neutral π\n\nIt's good to reflect on steady days. Keep your goals in mind, and stay motivated!"
elif sentiment == 'positive':
return "Mood Detected: Positive π\n\nYou're on the right track! Keep shining! π"
else:
return "Mood Detected: Unknown π€\n\nKeep going, you're doing great!"
# Gradio UI
def chatbot_ui():
# Define the interface
interface = gr.Interface(
fn=analyze_sentiment,
inputs=gr.Textbox(label="Enter your text here:"),
outputs=gr.Textbox(label="Motivational Message"),
title="Student Sentiment Analysis Chatbot",
description="This chatbot detects your mood and provides positive or motivational messages."
)
return interface
# Launch the interface
if __name__ == "__main__":
chatbot_ui().launch()
|