Spaces:
Running
on
Zero
Running
on
Zero
shuanholmes
commited on
Commit
·
bf00c4c
1
Parent(s):
d429710
[FireFlow] Init Commit
Browse files- app.py +84 -74
- flux/modules/layers.py +38 -12
- flux/sampling.py +19 -15
app.py
CHANGED
@@ -45,24 +45,26 @@ def encode(init_image, torch_device):
|
|
45 |
init_image = ae.encode(init_image.to()).to(torch.bfloat16)
|
46 |
return init_image
|
47 |
|
48 |
-
|
|
|
49 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
50 |
name = 'flux-dev'
|
51 |
-
ae = load_ae(name, device)
|
52 |
t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512)
|
53 |
clip = load_clip(device)
|
54 |
-
model = load_flow_model(name, device=
|
55 |
-
offload
|
56 |
-
|
|
|
|
|
57 |
is_schnell = False
|
58 |
-
feature_path = 'feature'
|
59 |
output_dir = 'result'
|
60 |
add_sampling_metadata = True
|
61 |
|
62 |
@spaces.GPU(duration=120)
|
63 |
@torch.inference_mode()
|
64 |
-
def edit(init_image, source_prompt, target_prompt, num_steps, inject_step, guidance, seed):
|
65 |
-
|
66 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
67 |
torch.cuda.empty_cache()
|
68 |
seed = None
|
@@ -76,15 +78,12 @@ def edit(init_image, source_prompt, target_prompt, num_steps, inject_step, guida
|
|
76 |
|
77 |
width, height = init_image.shape[0], init_image.shape[1]
|
78 |
|
79 |
-
|
80 |
init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1
|
81 |
init_image = init_image.unsqueeze(0)
|
82 |
init_image = init_image.to(device)
|
83 |
with torch.no_grad():
|
84 |
init_image = ae.encode(init_image.to()).to(torch.bfloat16)
|
85 |
|
86 |
-
print(init_image.shape)
|
87 |
-
|
88 |
rng = torch.Generator(device="cpu")
|
89 |
opts = SamplingOptions(
|
90 |
source_prompt=source_prompt,
|
@@ -97,6 +96,11 @@ def edit(init_image, source_prompt, target_prompt, num_steps, inject_step, guida
|
|
97 |
)
|
98 |
if opts.seed is None:
|
99 |
opts.seed = torch.Generator(device="cpu").seed()
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
print(f"Generating with seed {opts.seed}:\n{opts.source_prompt}")
|
102 |
t0 = time.perf_counter()
|
@@ -106,12 +110,23 @@ def edit(init_image, source_prompt, target_prompt, num_steps, inject_step, guida
|
|
106 |
#############inverse#######################
|
107 |
info = {}
|
108 |
info['feature'] = {}
|
109 |
-
info['inject_step'] = inject_step
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
with torch.no_grad():
|
112 |
inp = prepare(t5, clip, init_image, prompt=opts.source_prompt)
|
113 |
inp_target = prepare(t5, clip, init_image, prompt=opts.target_prompt)
|
114 |
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
# inversion initial noise
|
117 |
with torch.no_grad():
|
@@ -137,6 +152,11 @@ def edit(init_image, source_prompt, target_prompt, num_steps, inject_step, guida
|
|
137 |
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
|
138 |
else:
|
139 |
idx = 0
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
device = torch.device("cuda")
|
142 |
with torch.autocast(device_type=device.type, dtype=torch.bfloat16):
|
@@ -166,97 +186,87 @@ def edit(init_image, source_prompt, target_prompt, num_steps, inject_step, guida
|
|
166 |
return img
|
167 |
|
168 |
|
169 |
-
|
170 |
-
def create_demo(model_name: str, device: str = "cuda:0" if torch.cuda.is_available() else "cpu", offload: bool = False):
|
171 |
is_schnell = model_name == "flux-schnell"
|
172 |
title = r"""
|
173 |
-
<h1 align="center"
|
174 |
"""
|
175 |
-
|
176 |
description = r"""
|
177 |
-
<b>Official 🤗 Gradio
|
178 |
-
|
179 |
-
❗️❗️❗️[<b>Important</b>] Editing steps:<br>
|
180 |
-
1️⃣ Upload images you want to edit (The resolution is expected be less than 1360*768, or the memory of GPU may be not enough.) <br>
|
181 |
-
2️⃣ Enter the source prompt, which describes the content of the image you unload. The source prompt is not mandatory; you can also leave it to null. <br>
|
182 |
-
3️⃣ Enter the target prompt which describes the expected content of the edited image. <br>
|
183 |
-
4️⃣ Click the <b>Generate</b> button to start editing. <br>
|
184 |
-
5️⃣ We suggest to adjust the value of **feature sharing steps** for better results.<br>
|
185 |
-
"""
|
186 |
-
article = r"""
|
187 |
-
If our work is helpful, please help to ⭐ the <a href='https://github.com/wangjiangshan0725/RF-Solver-Edit' target='_blank'>Github Repo</a>. Thanks!
|
188 |
"""
|
189 |
-
|
190 |
-
|
191 |
-
[![GitHub Stars](https://img.shields.io/github/stars/wangjiangshan0725/RF-Solver-Edit?style=social)](https://github.com/wangjiangshan0725/RF-Solver-Edit)
|
192 |
"""
|
193 |
-
|
194 |
css = '''
|
195 |
.gradio-container {width: 85% !important}
|
196 |
'''
|
197 |
with gr.Blocks(css=css) as demo:
|
198 |
-
#
|
199 |
-
|
200 |
gr.HTML(title)
|
201 |
gr.Markdown(description)
|
202 |
gr.Markdown(article)
|
203 |
-
gr.Markdown(badge)
|
204 |
|
|
|
205 |
with gr.Row():
|
|
|
206 |
with gr.Column():
|
207 |
-
source_prompt = gr.Textbox(label="Source Prompt", value="")
|
208 |
-
target_prompt = gr.Textbox(label="Target Prompt", value="")
|
209 |
-
# source_prompt = gr.Text(
|
210 |
-
# label="Source Prompt",
|
211 |
-
# show_label=False,
|
212 |
-
# max_lines=1,
|
213 |
-
# placeholder="Enter your source prompt",
|
214 |
-
# container=False,
|
215 |
-
# value=""
|
216 |
-
# )
|
217 |
-
# target_prompt = gr.Text(
|
218 |
-
# label="Target Prompt",
|
219 |
-
# show_label=False,
|
220 |
-
# max_lines=1,
|
221 |
-
# placeholder="Enter your target prompt",
|
222 |
-
# container=False,
|
223 |
-
# value=""
|
224 |
-
# )
|
225 |
init_image = gr.Image(label="Input Image", visible=True)
|
226 |
-
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
generate_btn = gr.Button("Generate")
|
229 |
|
|
|
230 |
with gr.Column():
|
231 |
with gr.Accordion("Advanced Options", open=True):
|
232 |
-
num_steps = gr.Slider(
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
|
|
238 |
output_image = gr.Image(label="Generated Image")
|
239 |
|
|
|
240 |
generate_btn.click(
|
241 |
fn=edit,
|
242 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
outputs=[output_image]
|
244 |
)
|
245 |
-
|
246 |
-
|
247 |
return demo
|
248 |
|
249 |
-
|
250 |
-
# if __name__ == "__main__":
|
251 |
-
# import argparse
|
252 |
-
# parser = argparse.ArgumentParser(description="Flux")
|
253 |
-
# parser.add_argument("--name", type=str, default="flux-dev", choices=list(configs.keys()), help="Model name")
|
254 |
-
# parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use")
|
255 |
-
# parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
|
256 |
-
# parser.add_argument("--share", action="store_true", help="Create a public link to your demo")
|
257 |
-
|
258 |
-
# parser.add_argument("--port", type=int, default=41035)
|
259 |
-
# args = parser.parse_args()
|
260 |
-
|
261 |
demo = create_demo("flux-dev", "cuda")
|
262 |
demo.launch()
|
|
|
45 |
init_image = ae.encode(init_image.to()).to(torch.bfloat16)
|
46 |
return init_image
|
47 |
|
48 |
+
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
49 |
+
offload = True
|
50 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
51 |
name = 'flux-dev'
|
52 |
+
ae = load_ae(name, device="cpu" if offload else torch_device)
|
53 |
t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512)
|
54 |
clip = load_clip(device)
|
55 |
+
model = load_flow_model(name, device="cpu" if offload else torch_device)
|
56 |
+
if offload:
|
57 |
+
model.cpu()
|
58 |
+
torch.cuda.empty_cache()
|
59 |
+
ae.encoder.to(torch_device)
|
60 |
is_schnell = False
|
|
|
61 |
output_dir = 'result'
|
62 |
add_sampling_metadata = True
|
63 |
|
64 |
@spaces.GPU(duration=120)
|
65 |
@torch.inference_mode()
|
66 |
+
def edit(init_image, source_prompt, target_prompt, editing_strategy, num_steps, inject_step, guidance, seed):
|
67 |
+
global ae, t5, clip, model, name, is_schnell, output_dir, add_sampling_metadata
|
68 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
69 |
torch.cuda.empty_cache()
|
70 |
seed = None
|
|
|
78 |
|
79 |
width, height = init_image.shape[0], init_image.shape[1]
|
80 |
|
|
|
81 |
init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1
|
82 |
init_image = init_image.unsqueeze(0)
|
83 |
init_image = init_image.to(device)
|
84 |
with torch.no_grad():
|
85 |
init_image = ae.encode(init_image.to()).to(torch.bfloat16)
|
86 |
|
|
|
|
|
87 |
rng = torch.Generator(device="cpu")
|
88 |
opts = SamplingOptions(
|
89 |
source_prompt=source_prompt,
|
|
|
96 |
)
|
97 |
if opts.seed is None:
|
98 |
opts.seed = torch.Generator(device="cpu").seed()
|
99 |
+
|
100 |
+
if offload:
|
101 |
+
ae = ae.cpu()
|
102 |
+
torch.cuda.empty_cache()
|
103 |
+
t5, clip = t5.to(torch_device), clip.to(torch_device)
|
104 |
|
105 |
print(f"Generating with seed {opts.seed}:\n{opts.source_prompt}")
|
106 |
t0 = time.perf_counter()
|
|
|
110 |
#############inverse#######################
|
111 |
info = {}
|
112 |
info['feature'] = {}
|
113 |
+
info['inject_step'] = min(inject_step, num_steps)
|
114 |
+
info['reuse_v']= False
|
115 |
+
info['editing_strategy']= " ".join(editing_strategy)
|
116 |
+
info['start_layer_index'] = 20
|
117 |
+
info['end_layer_index'] = 37
|
118 |
+
qkv_ratio = '1.0,1.0,1.0'
|
119 |
+
info['qkv_ratio'] = list(map(float, qkv_ratio.split(',')))
|
120 |
|
121 |
with torch.no_grad():
|
122 |
inp = prepare(t5, clip, init_image, prompt=opts.source_prompt)
|
123 |
inp_target = prepare(t5, clip, init_image, prompt=opts.target_prompt)
|
124 |
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
|
125 |
+
|
126 |
+
if offload:
|
127 |
+
t5, clip = t5.cpu(), clip.cpu()
|
128 |
+
torch.cuda.empty_cache()
|
129 |
+
model = model.to(torch_device)
|
130 |
|
131 |
# inversion initial noise
|
132 |
with torch.no_grad():
|
|
|
152 |
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
|
153 |
else:
|
154 |
idx = 0
|
155 |
+
|
156 |
+
if offload:
|
157 |
+
model.cpu()
|
158 |
+
torch.cuda.empty_cache()
|
159 |
+
ae.decoder.to(x.device)
|
160 |
|
161 |
device = torch.device("cuda")
|
162 |
with torch.autocast(device_type=device.type, dtype=torch.bfloat16):
|
|
|
186 |
return img
|
187 |
|
188 |
|
189 |
+
def create_demo(model_name: str, device: str = "cuda:0" if torch.cuda.is_available() else "cpu"):
|
|
|
190 |
is_schnell = model_name == "flux-schnell"
|
191 |
title = r"""
|
192 |
+
<h1 align="center">🔥FireFlow: Fast Inversion of Rectified Flow for Image Semantic Editing</h1>
|
193 |
"""
|
|
|
194 |
description = r"""
|
195 |
+
<b>Official 🤗 Gradio Demo</b> for <a href='https://github.com/HolmesShuan/FireFlow-Fast-Inversion-of-Rectified-Flow-for-Image-Semantic-Editing' target='_blank'><b>🔥FireFlow: Fast Inversion of Rectified Flow for Image Semantic Editing</b></a>.<br>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
"""
|
197 |
+
article = r"""
|
198 |
+
If you find our work helpful, we would greatly appreciate it if you could ⭐ our <a href='https://github.com/HolmesShuan/FireFlow-Fast-Inversion-of-Rectified-Flow-for-Image-Semantic-Editing' target='_blank'>GitHub repository</a>. Thank you for your support!
|
|
|
199 |
"""
|
|
|
200 |
css = '''
|
201 |
.gradio-container {width: 85% !important}
|
202 |
'''
|
203 |
with gr.Blocks(css=css) as demo:
|
204 |
+
# Add a title, description, and additional information
|
|
|
205 |
gr.HTML(title)
|
206 |
gr.Markdown(description)
|
207 |
gr.Markdown(article)
|
|
|
208 |
|
209 |
+
# Layout: Two columns
|
210 |
with gr.Row():
|
211 |
+
# Left Column: Inputs
|
212 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
init_image = gr.Image(label="Input Image", visible=True)
|
214 |
+
source_prompt = gr.Textbox(label="Source Prompt", value="", placeholder="(Optional) Describe the content of the uploaded image.")
|
215 |
+
target_prompt = gr.Textbox(label="Target Prompt", value="", placeholder="(Required) Describe the desired content of the edited image.")
|
216 |
+
# CheckboxGroup for editing strategies
|
217 |
+
editing_strategy = gr.CheckboxGroup(
|
218 |
+
label="Editing Technique",
|
219 |
+
choices=['replace_v', 'add_q', 'add_k'],
|
220 |
+
value=['replace_v'], # Default: none selected
|
221 |
+
interactive=True
|
222 |
+
)
|
223 |
generate_btn = gr.Button("Generate")
|
224 |
|
225 |
+
# Right Column: Advanced options and output
|
226 |
with gr.Column():
|
227 |
with gr.Accordion("Advanced Options", open=True):
|
228 |
+
num_steps = gr.Slider(
|
229 |
+
minimum=1,
|
230 |
+
maximum=30,
|
231 |
+
value=8,
|
232 |
+
step=1,
|
233 |
+
label="Total timesteps"
|
234 |
+
)
|
235 |
+
inject_step = gr.Slider(
|
236 |
+
minimum=1,
|
237 |
+
maximum=15,
|
238 |
+
value=1,
|
239 |
+
step=1,
|
240 |
+
label="Feature sharing steps"
|
241 |
+
)
|
242 |
+
guidance = gr.Slider(
|
243 |
+
minimum=1.0,
|
244 |
+
maximum=8.0,
|
245 |
+
value=2.0,
|
246 |
+
step=0.1,
|
247 |
+
label="Guidance",
|
248 |
+
interactive=not is_schnell
|
249 |
+
)
|
250 |
|
251 |
+
# Output display
|
252 |
output_image = gr.Image(label="Generated Image")
|
253 |
|
254 |
+
# Button click event to trigger the edit function
|
255 |
generate_btn.click(
|
256 |
fn=edit,
|
257 |
+
inputs=[
|
258 |
+
init_image,
|
259 |
+
source_prompt,
|
260 |
+
target_prompt,
|
261 |
+
editing_strategy, # Include the selected editing strategies
|
262 |
+
num_steps,
|
263 |
+
inject_step,
|
264 |
+
guidance
|
265 |
+
],
|
266 |
outputs=[output_image]
|
267 |
)
|
268 |
+
|
|
|
269 |
return demo
|
270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
demo = create_demo("flux-dev", "cuda")
|
272 |
demo.launch()
|
flux/modules/layers.py
CHANGED
@@ -243,21 +243,47 @@ class SingleStreamBlock(nn.Module):
|
|
243 |
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
244 |
q, k = self.norm(q, k, v)
|
245 |
|
246 |
-
# Note: If the memory of your device is not enough, you may consider uncomment the following code.
|
247 |
-
# if info['inject'] and info['id'] > 19:
|
248 |
-
# store_path = os.path.join(info['feature_path'], str(info['t']) + '_' + str(info['second_order']) + '_' + str(info['id']) + '_' + info['type'] + '_' + 'V' + '.pth')
|
249 |
-
# if info['inverse']:
|
250 |
-
# torch.save(v, store_path)
|
251 |
-
# if not info['inverse']:
|
252 |
-
# v = torch.load(store_path, weights_only=True)
|
253 |
-
|
254 |
# Save the features in the memory
|
255 |
-
if info['inject'] and info['id']
|
256 |
-
|
|
|
|
|
257 |
if info['inverse']:
|
258 |
-
info['
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
else:
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
# compute attention
|
263 |
attn = attention(q, k, v, pe=pe)
|
|
|
243 |
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
244 |
q, k = self.norm(q, k, v)
|
245 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
# Save the features in the memory
|
247 |
+
if info['inject'] and info['id'] <= info['end_layer_index'] and info['id'] >= info['start_layer_index']:
|
248 |
+
v_feature_name = str(info['t']) + '_' + str(info['second_order']) + '_' + str(info['id']) + '_' + info['type'] + '_' + 'V'
|
249 |
+
k_feature_name = str(info['t']) + '_' + str(info['second_order']) + '_' + str(info['id']) + '_' + info['type'] + '_' + 'K'
|
250 |
+
q_feature_name = str(info['t']) + '_' + str(info['second_order']) + '_' + str(info['id']) + '_' + info['type'] + '_' + 'Q'
|
251 |
if info['inverse']:
|
252 |
+
if info['reuse_v']:
|
253 |
+
info['feature'][v_feature_name] = v.cpu()
|
254 |
+
else:
|
255 |
+
editing_strategy = info['editing_strategy']
|
256 |
+
qkv_ratio = info['qkv_ratio']
|
257 |
+
if 'q' in editing_strategy:
|
258 |
+
info['feature'][q_feature_name] = (q * qkv_ratio[0]).cpu()
|
259 |
+
if 'k' in editing_strategy:
|
260 |
+
info['feature'][k_feature_name] = (k * qkv_ratio[1]).cpu()
|
261 |
+
if 'v' in editing_strategy:
|
262 |
+
info['feature'][v_feature_name] = (v * qkv_ratio[2]).cpu()
|
263 |
else:
|
264 |
+
if info['reuse_v']:
|
265 |
+
if v_feature_name in info['feature']:
|
266 |
+
v = info['feature'][v_feature_name].cuda()
|
267 |
+
else:
|
268 |
+
editing_strategy = info['editing_strategy']
|
269 |
+
if 'replace_v' in editing_strategy:
|
270 |
+
if v_feature_name in info['feature']:
|
271 |
+
v = info['feature'][v_feature_name].cuda()
|
272 |
+
if 'add_v' in editing_strategy:
|
273 |
+
if v_feature_name in info['feature']:
|
274 |
+
v += info['feature'][v_feature_name].cuda()
|
275 |
+
if 'replace_k' in editing_strategy:
|
276 |
+
if k_feature_name in info['feature']:
|
277 |
+
k = info['feature'][k_feature_name].cuda()
|
278 |
+
if 'add_k' in editing_strategy:
|
279 |
+
if k_feature_name in info['feature']:
|
280 |
+
k += info['feature'][k_feature_name].cuda()
|
281 |
+
if 'replace_q' in editing_strategy:
|
282 |
+
if q_feature_name in info['feature']:
|
283 |
+
q = info['feature'][q_feature_name].cuda()
|
284 |
+
if 'add_q' in editing_strategy:
|
285 |
+
if q_feature_name in info['feature']:
|
286 |
+
q += info['feature'][q_feature_name].cuda()
|
287 |
|
288 |
# compute attention
|
289 |
attn = attention(q, k, v, pe=pe)
|
flux/sampling.py
CHANGED
@@ -97,6 +97,7 @@ def denoise(
|
|
97 |
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
|
98 |
|
99 |
step_list = []
|
|
|
100 |
for i, (t_curr, t_prev) in enumerate(zip(timesteps[:-1], timesteps[1:])):
|
101 |
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
|
102 |
info['t'] = t_prev if inverse else t_curr
|
@@ -104,20 +105,23 @@ def denoise(
|
|
104 |
info['second_order'] = False
|
105 |
info['inject'] = inject_list[i]
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
118 |
img_mid = img + (t_prev - t_curr) / 2 * pred
|
119 |
|
120 |
-
t_vec_mid = torch.full((img.shape[0],),
|
121 |
info['second_order'] = True
|
122 |
pred_mid, info = model(
|
123 |
img=img_mid,
|
@@ -129,9 +133,9 @@ def denoise(
|
|
129 |
guidance=guidance_vec,
|
130 |
info=info
|
131 |
)
|
132 |
-
|
133 |
-
|
134 |
-
img = img + (t_prev - t_curr) *
|
135 |
|
136 |
return img, info
|
137 |
|
|
|
97 |
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
|
98 |
|
99 |
step_list = []
|
100 |
+
next_step_velocity = None
|
101 |
for i, (t_curr, t_prev) in enumerate(zip(timesteps[:-1], timesteps[1:])):
|
102 |
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
|
103 |
info['t'] = t_prev if inverse else t_curr
|
|
|
105 |
info['second_order'] = False
|
106 |
info['inject'] = inject_list[i]
|
107 |
|
108 |
+
if next_step_velocity is None:
|
109 |
+
pred, info = model(
|
110 |
+
img=img,
|
111 |
+
img_ids=img_ids,
|
112 |
+
txt=txt,
|
113 |
+
txt_ids=txt_ids,
|
114 |
+
y=vec,
|
115 |
+
timesteps=t_vec,
|
116 |
+
guidance=guidance_vec,
|
117 |
+
info=info
|
118 |
+
)
|
119 |
+
else:
|
120 |
+
pred = next_step_velocity
|
121 |
+
|
122 |
img_mid = img + (t_prev - t_curr) / 2 * pred
|
123 |
|
124 |
+
t_vec_mid = torch.full((img.shape[0],), t_curr + (t_prev - t_curr) / 2, dtype=img.dtype, device=img.device)
|
125 |
info['second_order'] = True
|
126 |
pred_mid, info = model(
|
127 |
img=img_mid,
|
|
|
133 |
guidance=guidance_vec,
|
134 |
info=info
|
135 |
)
|
136 |
+
next_step_velocity = pred_mid
|
137 |
+
|
138 |
+
img = img + (t_prev - t_curr) * pred_mid
|
139 |
|
140 |
return img, info
|
141 |
|