File size: 6,241 Bytes
c2f4b94
 
de605d5
c2f4b94
 
 
 
 
 
9436178
acf6dc7
4f82c07
acf6dc7
99f29b1
55c1369
4f82c07
 
99f29b1
 
a7b151f
 
06fd7dd
a7b151f
1e7c3e2
99f29b1
704916d
16549c2
704916d
16549c2
 
7fd158b
16549c2
de605d5
 
 
cc9e550
de605d5
704916d
 
 
f4d0085
704916d
95c1fb9
704916d
 
 
 
35b7429
cc134c1
 
 
 
 
 
 
7fd158b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
title: README
emoji: 🐦
colorFrom: pink
colorTo: indigo
sdk: static
pinned: false
---

Hi, I am a Magpie 🐦!

πŸ•ΈοΈ **Project Website**: [https://magpie-align.github.io/](https://magpie-align.github.io/)

πŸ“„ **Technical Report**: [https://arxiv.org/abs/2406.08464](https://arxiv.org/abs/2406.08464)

πŸ€— **HF Paper Page**: [https://huggingface.co/papers/2406.08464](https://huggingface.co/papers/2406.08464)

😬 **Codes**: [https://github.com/magpie-align/magpie](https://github.com/magpie-align/magpie)

πŸ€— **Magpie Demo**: [https://huggingface.co/spaces/davanstrien/magpie](https://huggingface.co/spaces/davanstrien/magpie) (Thanks a lot for the implementation from @davanstrien!)

🐦 **MagpieLM**: [MagpieLM-4B](https://huggingface.co/spaces/yuchenlin/MagpieLM-4B), [MagpieLM-8B](https://huggingface.co/spaces/yuchenlin/MagpieLM-8B)

**Questions?** Please contact [Zhangchen](mailto:zxu9@uw.edu) and/or [Yuchen](mailto:yuchenl@allenai.org) by email or raise an issue in [Github](https://github.com/magpie-align/magpie/issues/new/choose).

## [🧭 Click here for full dataset navigation (SFT and DPO)](https://github.com/magpie-align/magpie/blob/main/navigation.md)

## Raw Datasets
|Model Name | Dataset | Type | Description |
|-------------|:-------|:-------|:-------|
| [Qwen2.5 72B Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) | [Magpie-Qwen2.5-Pro-1M](https://huggingface.co/datasets/Magpie-Align/Magpie-Qwen2.5-Pro-1M-v0.1) | SFT | 1M Raw conversations built with Qwen2.5 72B Instruct.
| [Llama 3.1 70B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct) | [Magpie-Llama-3.1-Pro-1M](https://huggingface.co/datasets/Magpie-Align/Magpie-Llama-3.1-Pro-1M-v0.1) | SFT | 1M Raw conversations built with Meta Llama 3.1 70B.
| [Llama 3 70B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) | [Magpie-Pro-1M](https://huggingface.co/datasets/Magpie-Align/Llama-3-Magpie-Pro-1M-v0.1) | SFT | 1M Raw conversations built with Meta Llama 3 70B.
| [Llama 3 8B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | [Magpie-Air-3M](https://huggingface.co/datasets/Magpie-Align/Llama-3-Magpie-Air-3M-v0.1) | SFT | 3M Raw conversations built with Meta Llama 3 8B.
| [Qwen2 72B Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) | [Magpie-Qwen2-Pro-1M](https://huggingface.co/datasets/Magpie-Align/Magpie-Qwen2-Pro-1M-v0.1) | SFT | 1M Raw conversations built with Qwen2 72B Instruct.
| [Qwen2 7B Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) | [Magpie-Qwen2-Air-3M](https://huggingface.co/datasets/Magpie-Align/Magpie-Qwen2-Air-3M-v0.1) | SFT | 3M Raw conversations built with Qwen2 7B Instruct.
| [Phi-3 Medium Instruct](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct) | [Magpie-Phi3-Pro-1M](https://huggingface.co/datasets/Magpie-Align/Magpie-Phi3-Pro-1M-v0.1) | SFT | 1M Raw conversations built with Phi-3 Medium Instruct.
| [Gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) | [Magpie-Gemma2-Pro-534K](https://huggingface.co/datasets/Magpie-Align/Magpie-Gemma2-Pro-534K-v0.1) | SFT | 534K conversations built with Gemma-2-27b-it.
| [Llama 3.1 405B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct) | [Magpie-Ultra-v0.1](https://huggingface.co/datasets/argilla/magpie-ultra-v0.1) | SFT | [Argilla] 50K Raw conversations built with Meta Llama 3.1 405B.

### Recommended Filtered Datasets

Here are some filtered datasets made by the authors, which are utilized in our [Magpie-Align models](https://huggingface.co/collections/Magpie-Align/magpie-models-668c4a8eea81ccc0db130bdf). We also encourage you to [create and apply your own filters to customize datasets](https://github.com/magpie-align/magpie?tab=readme-ov-file#4-design-and-apply-your-filter). 

We've kept these datasets within the 200K-300K range for your convenience. We found this range represents a sweet spot balancing model performance and training time.

The full list of filtered datasets can be found [here](https://github.com/magpie-align/magpie/blob/main/navigation.md).

|Model Name | Dataset | Size | Type | Description |
|-------------|:-------|:-------|:-------|:-------|
| [Llama 3.1 70B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct) | [Magpie-Llama-3.1-Pro-MT-300K-Filtered](https://huggingface.co/datasets/Magpie-Align/Magpie-Llama-3.1-Pro-MT-300K-Filtered) | 300K | SFT | (🌟 Flexible License! 🌟) Select 300K high quality multi-turn conversations from Magpie-Llama-3.1-Pro-MT-500K.
| [Llama 3 70B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) | [Magpie-Pro-300K-Filtered](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered) | 300K | SFT | Apply a filter and select 300K high quality conversations from Magpie-Pro-1M.
| [Llama 3 70B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) | [Magpie-Pro-MT-300K](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-MT-300K-v0.1) | 300K | SFT | Select 300K difficult questions from Magpie-Pro-1M and extend to multi-turn conversations.
| [Llama 3 70B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) | [Magpie-Reasoning-150K](https://huggingface.co/datasets/Magpie-Align/Magpie-Reasoning-150K) | 150K | SFT | Reasoning booster with 150K math + code + reasoning conversations. Recommend mixing with Magpie-Pro-MT-300K.
| [Qwen2 72B Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) | [Magpie-Qwen2-Pro-200K-Chinese](https://huggingface.co/datasets/Magpie-Align/Magpie-Qwen2-Pro-200K-Chinese) | 200K | SFT | Apply a filter and select 200K high quality Chinese conversations from Magpie-Qwen2-Pro-1M.
| [Gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) | [Magpie-Gemma2-Pro-200K-Filtered](https://huggingface.co/datasets/Magpie-Align/Magpie-Gemma2-Pro-200K-Filtered) | 200K | SFT | (🌟 Flexible License! 🌟) Apply a filter and select 200K conversations from Magpie-Gemma2-Pro-534K.
| [Llama 3 8B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | [Magpie-Air-DPO-100K](https://huggingface.co/datasets/Magpie-Align/Magpie-Air-DPO-100K-v0.1) | 100K | DPO | DPO dataset via Best-of-N sampling and rewards.