Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
MODEL_NAME = "mistralai/Mistral-7B-v0.3" | |
token = os.getenv("HF_API_TOKEN") # This must be set in the Space's secrets | |
print("Loading tokenizer...") | |
tokenizer = AutoTokenizer.from_pretrained( | |
MODEL_NAME, | |
trust_remote_code=True, | |
token=token, | |
) | |
print("Loading model in 4-bit...") | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
torch_dtype=torch.float16, | |
device_map="auto", # Free Space => CPU | |
load_in_4bit=True, | |
trust_remote_code=True, | |
token=token, | |
) | |
model.eval() | |
def generate_text(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=128, | |
temperature=0.7, | |
repetition_penalty=1.2, | |
) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
demo = gr.Interface( | |
fn=generate_text, | |
inputs=gr.Textbox(lines=3, label="Your Prompt"), | |
outputs=gr.Textbox(label="Mistral 7B Response"), | |
title="Mistral 7B (4-bit) Chat", | |
description=( | |
"A minimal Mistral 7B example on free CPU. " | |
"It'll be slow and can OOM with big prompts." | |
), | |
) | |
if __name__ == "__main__": | |
demo.launch() | |