Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
|
5 |
-
# MODEL REPO
|
6 |
MODEL_NAME = "mistralai/Mistral-7B-v0.1"
|
7 |
|
8 |
-
# Load tokenizer
|
9 |
print("Loading tokenizer...")
|
10 |
tokenizer = AutoTokenizer.from_pretrained(
|
11 |
MODEL_NAME,
|
12 |
-
trust_remote_code=True
|
|
|
13 |
)
|
14 |
|
15 |
-
# Load model in 4-bit on CPU
|
16 |
-
# (Even though we set device_map="auto", on a free Space there's no GPU, so it stays on CPU.)
|
17 |
print("Loading model in 4-bit...")
|
18 |
model = AutoModelForCausalLM.from_pretrained(
|
19 |
MODEL_NAME,
|
20 |
torch_dtype=torch.float16,
|
21 |
-
device_map="auto", #
|
22 |
-
load_in_4bit=True, # bitsandbytes
|
23 |
-
trust_remote_code=True
|
|
|
24 |
)
|
25 |
|
26 |
model.eval()
|
27 |
|
28 |
-
def
|
29 |
"""
|
30 |
-
|
|
|
31 |
"""
|
32 |
-
# Tokenize
|
33 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
34 |
-
|
35 |
-
# Generate
|
36 |
with torch.no_grad():
|
37 |
outputs = model.generate(
|
38 |
**inputs,
|
39 |
-
max_new_tokens=128,
|
40 |
temperature=0.7,
|
41 |
-
repetition_penalty=1.
|
42 |
)
|
|
|
43 |
|
44 |
-
# Decode
|
45 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
46 |
-
return response
|
47 |
-
|
48 |
-
# Create a Gradio interface
|
49 |
demo = gr.Interface(
|
50 |
-
fn=
|
51 |
inputs=gr.Textbox(lines=3, label="Your Prompt"),
|
52 |
outputs=gr.Textbox(label="Mistral 7B Response"),
|
53 |
title="Mistral 7B (4-bit) Chat",
|
54 |
description=(
|
55 |
-
"A minimal Mistral
|
56 |
-
"
|
57 |
-
|
58 |
-
)
|
59 |
)
|
60 |
|
61 |
-
# Launch the Gradio app
|
62 |
if __name__ == "__main__":
|
63 |
demo.launch()
|
|
|
1 |
+
from huggingface_hub import login
|
2 |
+
import os
|
3 |
+
|
4 |
+
# 1) Log in so we can download from the gated Mistral repo
|
5 |
+
login(token=os.getenv("HF_API_TOKEN"))
|
6 |
+
|
7 |
import gradio as gr
|
8 |
import torch
|
9 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
|
|
|
11 |
MODEL_NAME = "mistralai/Mistral-7B-v0.1"
|
12 |
|
|
|
13 |
print("Loading tokenizer...")
|
14 |
tokenizer = AutoTokenizer.from_pretrained(
|
15 |
MODEL_NAME,
|
16 |
+
trust_remote_code=True, # Mistral uses custom code
|
17 |
+
token=os.getenv("HF_API_TOKEN"), # Use your HF token
|
18 |
)
|
19 |
|
|
|
|
|
20 |
print("Loading model in 4-bit...")
|
21 |
model = AutoModelForCausalLM.from_pretrained(
|
22 |
MODEL_NAME,
|
23 |
torch_dtype=torch.float16,
|
24 |
+
device_map="auto", # On a free Space, this means CPU
|
25 |
+
load_in_4bit=True, # bitsandbytes 4-bit quantization
|
26 |
+
trust_remote_code=True,
|
27 |
+
token=os.getenv("HF_API_TOKEN"),
|
28 |
)
|
29 |
|
30 |
model.eval()
|
31 |
|
32 |
+
def generate_text(prompt):
|
33 |
"""
|
34 |
+
Basic text generation with Mistral 7B (4-bit).
|
35 |
+
NOTE: Inference will be very slow on CPU and might run out of memory.
|
36 |
"""
|
|
|
37 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
|
|
38 |
with torch.no_grad():
|
39 |
outputs = model.generate(
|
40 |
**inputs,
|
41 |
+
max_new_tokens=128, # keep small to avoid OOM
|
42 |
temperature=0.7,
|
43 |
+
repetition_penalty=1.2,
|
44 |
)
|
45 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
46 |
|
|
|
|
|
|
|
|
|
|
|
47 |
demo = gr.Interface(
|
48 |
+
fn=generate_text,
|
49 |
inputs=gr.Textbox(lines=3, label="Your Prompt"),
|
50 |
outputs=gr.Textbox(label="Mistral 7B Response"),
|
51 |
title="Mistral 7B (4-bit) Chat",
|
52 |
description=(
|
53 |
+
"A minimal Mistral 7B example running on free CPU. "
|
54 |
+
"Very slow, may OOM with big prompts."
|
55 |
+
),
|
|
|
56 |
)
|
57 |
|
|
|
58 |
if __name__ == "__main__":
|
59 |
demo.launch()
|