File size: 22,793 Bytes
0372395
5422b18
0372395
5422b18
0372395
5422b18
 
879cbd2
 
 
 
 
 
 
 
 
 
534942c
 
0372395
 
 
 
 
 
 
671ec44
 
50ea4f2
879cbd2
352a927
0372395
 
50ea4f2
0372395
 
 
 
 
352a927
0372395
 
 
534942c
671ec44
dea6e28
879cbd2
6c46b68
0372395
 
 
 
 
 
 
 
 
6c46b68
 
879cbd2
28fb579
 
 
 
 
 
 
0372395
 
67c5ffe
 
 
 
625ce8a
 
0372395
 
 
 
 
 
 
 
 
 
 
 
6c46b68
 
0372395
 
 
 
 
 
 
 
 
 
6c46b68
 
 
0372395
 
 
 
 
6c46b68
 
0372395
6c46b68
0372395
6c46b68
 
 
 
 
0372395
 
 
 
 
 
 
 
 
 
 
879cbd2
671ec44
0372395
5422b18
 
 
 
 
0372395
6c46b68
 
534942c
5422b18
534942c
 
0372395
6c46b68
 
 
 
 
 
0372395
 
 
 
 
 
 
 
 
6c46b68
0372395
 
 
 
 
 
 
 
 
 
 
 
879cbd2
 
 
 
0372395
 
 
 
 
6c46b68
 
 
 
 
 
 
 
 
 
0372395
879cbd2
671ec44
 
 
 
 
 
 
50ea4f2
c864f13
 
 
 
 
671ec44
534942c
 
 
 
 
671ec44
 
 
 
 
 
 
 
 
 
 
 
 
534942c
 
 
671ec44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
534942c
 
 
 
671ec44
 
534942c
 
 
671ec44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586aae5
671ec44
534942c
 
 
 
 
 
586aae5
 
534942c
671ec44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
534942c
879cbd2
671ec44
 
b5d3385
c864f13
 
34369ea
0372395
cd6f834
0372395
 
 
879cbd2
3da9bc8
e752336
 
 
fd2a1e5
6c46b68
 
534942c
6c46b68
 
 
 
 
879cbd2
 
 
 
 
 
 
 
 
0372395
879cbd2
 
586aae5
 
 
 
671ec44
625ce8a
671ec44
625ce8a
 
 
 
671ec44
625ce8a
 
671ec44
625ce8a
 
671ec44
 
 
625ce8a
 
 
 
 
 
671ec44
 
 
 
534942c
 
 
 
 
 
6c46b68
 
 
 
 
 
 
 
0a949ac
879cbd2
352a927
534942c
352a927
671ec44
879cbd2
671ec44
879cbd2
 
 
 
 
 
0372395
6c46b68
 
534942c
879cbd2
0a949ac
879cbd2
671ec44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0372395
671ec44
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import argparse
import os
from pathlib import Path

import logging
import re_matching

logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

logging.basicConfig(
    level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)

logger = logging.getLogger(__name__)
import shutil
from scipy.io.wavfile import write
import librosa
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from tools.sentence import extrac, is_japanese, is_chinese, seconds_to_ass_time, extract_text_from_file, remove_annotations,extract_and_convert


import gradio as gr

import utils
from config import config

import torch
import commons
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import utils

from models import SynthesizerTrn
from text.symbols import symbols
import sys
import re
from tools.translate import translate

net_g = None

device = (
        "cuda:0"
        if torch.cuda.is_available()
        else (
            "mps"
            if sys.platform == "darwin" and torch.backends.mps.is_available()
            else "cpu"
        )
    )

#device = "cpu"
BandList = {
        "PoppinParty":["香澄","有咲","たえ","りみ","沙綾"],
        "Afterglow":["蘭","モカ","ひまり","巴","つぐみ"],
        "HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"],
        "PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"],
        "Roselia":["友希那","紗夜","リサ","燐子","あこ"],
        "RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"],
        "Morfonica":["ましろ","瑠唯","つくし","七深","透子"],
        "MyGo":["燈","愛音","そよ","立希","楽奈"],
        "AveMujica":["祥子","睦","海鈴","にゃむ","初華"],
        "圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"],
        "凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"],
        "弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"],
        "西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"]
}

def get_net_g(model_path: str,  device: str, hps):
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model,
    ).to(device)
    _ = net_g.eval()
    _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
    return net_g

def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7):
    style_text = None if style_text == "" else style_text
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert_ori = get_bert(
        norm_text, word2ph, language_str, device, style_text, style_weight
    )
    del word2ph
    assert bert_ori.shape[-1] == len(phone), phone

    if language_str == "ZH":
        bert = bert_ori
        ja_bert = torch.randn(1024, len(phone))
        en_bert = torch.randn(1024, len(phone))
    elif language_str == "JP":
        bert = torch.randn(1024, len(phone))
        ja_bert = bert_ori
        en_bert = torch.randn(1024, len(phone))
    elif language_str == "EN":
        bert = torch.randn(1024, len(phone))
        ja_bert = torch.randn(1024, len(phone))
        en_bert = bert_ori
    else:
        raise ValueError("language_str should be ZH, JP or EN")

    assert bert.shape[-1] == len(
        phone
    ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)
    return bert, ja_bert, en_bert, phone, tone, language


def infer(
    text,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    sid,
    style_text=None,
    style_weight=0.7,
    language = "Auto",
):
    if language == "Auto":
        language= 'JP' if is_japanese(text) else 'ZH'
    bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
        text,
        language,
        hps,
        device,
        style_text=style_text,
        style_weight=style_weight,
    )
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        ja_bert = ja_bert.to(device).unsqueeze(0)
        en_bert = en_bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        # emo = emo.to(device).unsqueeze(0)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                ja_bert,
                en_bert,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        del (
            x_tst,
            tones,
            lang_ids,
            bert,
            x_tst_lengths,
            speakers,
            ja_bert,
            en_bert,
        )  # , emo
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        return (hps.data.sampling_rate,gr.processing_utils.convert_to_16_bit_wav(audio))

def is_japanese(string):
        for ch in string:
            if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
                return True
        return False

def loadmodel(model):
    _ = net_g.eval()
    _ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True)
    return "success"

def generate_audio_and_srt_for_group(group, outputPath, group_index, sampling_rate, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime):
    audio_fin = []
    ass_entries = []
    start_time = 0
    #speaker = random.choice(cara_list)
    ass_header = """[Script Info]
; 我没意见
Title: Audiobook
ScriptType: v4.00+
WrapStyle: 0
PlayResX: 640
PlayResY: 360
ScaledBorderAndShadow: yes
[V4+ Styles]
Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding
Style: Default,Arial,20,&H00FFFFFF,&H000000FF,&H00000000,&H00000000,0,0,0,0,100,100,0,0,1,1,1,2,10,10,10,1
[Events]
Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text
"""

    for sentence in group:
        try:
            FakeSpeaker = sentence.split("|")[0]
            print(FakeSpeaker)
            SpeakersList = re.split('\n', spealerList)
            if FakeSpeaker in list(hps.data.spk2id.keys()):
                speaker = FakeSpeaker
            for i in SpeakersList:
                if FakeSpeaker == i.split("|")[1]:
                    speaker = i.split("|")[0]
            if sentence != '\n':
                audio = infer_simple((remove_annotations(sentence.split("|")[-1]).replace(" ","")+"。").replace(",。","。").replace("。。","。"), sdp_ratio, noise_scale, noise_scale_w, length_scale,speaker)
                silence_frames = int(silenceTime * 44010) if is_chinese(sentence) else int(silenceTime * 44010)
                silence_data = np.zeros((silence_frames,), dtype=audio.dtype)
                audio_fin.append(audio)
                audio_fin.append(silence_data)

                duration = len(audio) / sampling_rate
                print(duration)
                end_time = start_time + duration + silenceTime
                ass_entries.append("Dialogue: 0,{},{},".format(seconds_to_ass_time(start_time), seconds_to_ass_time(end_time)) + "Default,,0,0,0,,{}".format(sentence.replace("|",":")))
                start_time = end_time
        except:
            pass
    wav_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.wav')
    ass_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.ass')

    write(wav_filename, sampling_rate, np.concatenate(audio_fin))

    with open(ass_filename, 'w', encoding='utf-8') as f:
        f.write(ass_header + '\n'.join(ass_entries))
    return (hps.data.sampling_rate, np.concatenate(audio_fin))

def audiobook(inputFile, groupsize, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime,filepath,raw_text):
    directory_path = filepath if torch.cuda.is_available() else "books"
 
    if os.path.exists(directory_path):
        shutil.rmtree(directory_path)

    os.makedirs(directory_path)
    if inputFile:
        text = extract_text_from_file(inputFile.name)
    else:
        text = raw_text
    sentences = extrac(extract_and_convert(text))
    GROUP_SIZE = groupsize
    for i in range(0, len(sentences), GROUP_SIZE):
        group = sentences[i:i+GROUP_SIZE]
        if spealerList == "":
            spealerList = "无"
        result = generate_audio_and_srt_for_group(group,directory_path, i//GROUP_SIZE + 1, 44100, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime)
        if not torch.cuda.is_available():
            return result
    return result

def infer_simple(
    text,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    sid,
    style_text=None,
    style_weight=0.7,
):
    if is_chinese(text) or is_japanese(text):
        if len(text) > 1:
            language= 'JP' if is_japanese(text) else 'ZH'
            bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
                text,
                language,
                hps,
                device,
                style_text="",
                style_weight=0,
            )
            with torch.no_grad():
                x_tst = phones.to(device).unsqueeze(0)
                tones = tones.to(device).unsqueeze(0)
                lang_ids = lang_ids.to(device).unsqueeze(0)
                bert = bert.to(device).unsqueeze(0)
                ja_bert = ja_bert.to(device).unsqueeze(0)
                en_bert = en_bert.to(device).unsqueeze(0)
                x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
                # emo = emo.to(device).unsqueeze(0)
                del phones
                speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
                audio = (
                    net_g.infer(
                        x_tst,
                        x_tst_lengths,
                        speakers,
                        tones,
                        lang_ids,
                        bert,
                        ja_bert,
                        en_bert,
                        sdp_ratio=sdp_ratio,
                        noise_scale=noise_scale,
                        noise_scale_w=noise_scale_w,
                        length_scale=length_scale,
                    )[0][0, 0]
                    .data.cpu()
                    .float()
                    .numpy()
                )
                del (
                    x_tst,
                    tones,
                    lang_ids,
                    bert,
                    x_tst_lengths,
                    speakers,
                    ja_bert,
                    en_bert,
                )  # , emo
                if torch.cuda.is_available():
                    torch.cuda.empty_cache()
                return audio

if __name__ == "__main__":
    languages = [ "Auto", "ZH", "JP"]
    modelPaths = []
    for dirpath, dirnames, filenames in os.walk('Data/Chinese/models/'):
        for filename in filenames:
            modelPaths.append(os.path.join(dirpath, filename))
    hps = utils.get_hparams_from_file('Data/Chinese/config.json')
    net_g = get_net_g(
        model_path="Data/Chinese/models/G_80000.pth", device=device, hps=hps
    )
    speaker_ids = hps.data.spk2id
    speakers = list(speaker_ids.keys())
    with gr.Blocks() as app:
        gr.Markdown(value="""
            [日语特化版(推荐)](https://huggingface.co/spaces/Mahiruoshi/BangStarlight),国内可用连接: https://mahiruoshi-BangStarlight.hf.space/\n
            [假名标注版](https://huggingface.co/spaces/Mahiruoshi/MyGO_VIts-bert),国内可用连接: https://mahiruoshi-MyGO-VIts-bert.hf.space/\n
            该界面的真实链接(国内可用): https://mahiruoshi-bangdream-bert-vits2.hf.space/\n
            ([Bert-Vits2](https://github.com/Stardust-minus/Bert-VITS2) V2.3)少歌邦邦全员在线语音合成\n
            [好玩的](http://love.soyorin.top/)\n
            API: https://mahiruoshi-bert-vits2-api.hf.space/ \n
            调用方式: https://mahiruoshi-bert-vits2-api.hf.space/?text={{speakText}}&speaker=chosen_speaker\n
            推荐搭配[Legado开源阅读](https://github.com/gedoor/legado)或[聊天bot](https://github.com/Paraworks/BangDreamAi)使用\n
            二创请标注作者:B站@Mahiroshi: https://space.bilibili.com/19874615\n
            训练数据集归属:BangDream及少歌手游,提取自BestDori,[数据集获取流程](https://nijigaku.top/2023/09/29/Bestbushiroad%E8%AE%A1%E5%88%92-vits-%E9%9F%B3%E9%A2%91%E6%8A%93%E5%8F%96%E5%8F%8A%E6%95%B0%E6%8D%AE%E9%9B%86%E5%AF%B9%E9%BD%90/)\n
            BangDream数据集下载[链接](https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/%E7%88%AC%E8%99%AB/SortPathUrl.txt)\n
            !!!注意:huggingface容器仅用作展示,建议在右上角更多选项中克隆本项目或Docker运行app.py/server.py,环境参考requirements.txt\n""")
        for band in BandList:
            with gr.TabItem(band):
                for name in BandList[band]:
                    with gr.TabItem(name):
                        with gr.Row():
                            with gr.Column():
                                with gr.Row():
                                    gr.Markdown(
                                        '<div align="center">'
                                        f'<img style="width:auto;height:400px;" src="https://mahiruoshi-bangdream-bert-vits2.hf.space/file/image/{name}.png">' 
                                        '</div>'
                                    )
                                length_scale = gr.Slider(
                                        minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节"
                                    )
                                language = gr.Dropdown(
                                        choices=languages, value="Auto", label="语言"
                                    )
                                with gr.Accordion(label="参数设定", open=True):
                                    sdp_ratio = gr.Slider(
                                    minimum=0, maximum=1, value=0.5, step=0.01, label="SDP/DP混合比"
                                    )
                                    noise_scale = gr.Slider(
                                        minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节"
                                    )
                                    noise_scale_w = gr.Slider(
                                        minimum=0.1, maximum=2, value=0.667, step=0.01, label="音素长度"
                                    )
                                    speaker = gr.Dropdown(
                                        choices=speakers, value=name, label="说话人"
                                    ) 
                                with gr.Accordion(label="切换模型", open=False):
                                    modelstrs = gr.Dropdown(label = "模型", choices = modelPaths, value = modelPaths[0], type = "value")
                                    btnMod = gr.Button("载入模型")
                                    statusa = gr.TextArea(label = "模型加载状态")
                                    btnMod.click(loadmodel, inputs=[modelstrs], outputs = [statusa])
                            with gr.Column():
                                text = gr.TextArea(
                                    label="文本输入",
                                    info="输入纯日语或者中文",
                                    value="我是来结束这个乐队的。",
                                )
                                style_text = gr.Textbox(
                                    label="情感辅助文本",
                                    info="语言保持跟主文本一致,文本可以参考训练集:https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/filelists/Mygo.list)",
                                    placeholder="使用辅助文本的语意来辅助生成对话(语言保持与主文本相同)\n\n"
                        "**注意**:不要使用**指令式文本**(如:开心),要使用**带有强烈情感的文本**(如:我好快乐!!!)"
                                                        )
                                style_weight = gr.Slider(
                                        minimum=0,
                                        maximum=1,
                                        value=0.7,
                                        step=0.1,
                                        label="Weight",
                                        info="主文本和辅助文本的bert混合比率,0表示仅主文本,1表示仅辅助文本",
                                    )
                                btn = gr.Button("点击生成", variant="primary")
                                audio_output = gr.Audio(label="Output Audio")
                                btntran = gr.Button("快速中翻日")
                                translateResult = gr.TextArea(label="使用百度翻译",placeholder="从这里复制翻译后的文本")
                                btntran.click(translate, inputs=[text], outputs = [translateResult])
                                
                    btn.click(
                        infer,
                        inputs=[
                            text,
                            sdp_ratio,
                            noise_scale,
                            noise_scale_w,
                            length_scale,
                            speaker,
                            style_text,
                            style_weight,
                            language,
                        ],
                        outputs=[audio_output],
                    )
        with gr.Tab('拓展功能'):
            with gr.Row():
                with gr.Column():
                    gr.Markdown(
                                    f"从 <a href='https://nijigaku.top/2023/10/03/BangDreamTTS/'>我的博客站点</a> 查看自制galgame使用说明\n</a>"
                                )
                    inputFile = gr.UploadButton(label="txt文件输入")
                    raw_text = gr.TextArea(
                                        label="文本输入",
                                        info="输入纯日语或者中文",
                                        value="つくし|我是来结束这个乐队的。",
                    )
                    groupSize = gr.Slider(
                    minimum=10, maximum=1000 if  torch.cuda.is_available() else 50,value = 50, step=1, label="单个音频文件包含的最大字数"
                    )
                    silenceTime = gr.Slider(
                    minimum=0, maximum=1, value=0.5, step=0.01, label="句子的间隔"
                    )
                    filepath = gr.TextArea(
                                        label="本地合成时的音频存储文件夹(会清空文件夹)",
                                        value = "D:/audiobook/book1",
                    )
                    spealerList = gr.TextArea(
                                        label="角色对应表,左边是你想要在每一句话合成中用到的speaker(见角色清单)右边是你上传文本时分隔符左边设置的说话人:{ChoseSpeakerFromConfigList}|{SeakerInUploadText}",
                                        placeholder = "ましろ|真白\n七深|七深\n透子|透子\nつくし|筑紫\n瑠唯|瑠唯\nそよ|素世\n祥子|祥子",
                    )                  
                    speaker = gr.Dropdown(
                        choices=speakers, value = "ましろ", label="选择默认说话人"
                    )
                with gr.Column():
                    sdp_ratio = gr.Slider(
                    minimum=0, maximum=1, value=0.2, step=0.01, label="SDP/DP混合比"
                    )
                    noise_scale = gr.Slider(
                        minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节"
                    )
                    noise_scale_w = gr.Slider(
                        minimum=0.1, maximum=2, value=0.667, step=0.01, label="音素长度"
                    )
                    length_scale = gr.Slider(
                        minimum=0.1, maximum=2, value=1, step=0.01, label="生成长度"
                    )
                    LastAudioOutput = gr.Audio(label="当使用cuda时才能在本地文件夹浏览全部文件")
                    btn2 = gr.Button("点击生成", variant="primary")
                btn2.click(
                    audiobook,
                    inputs=[
                        inputFile,
                        groupSize,
                        speaker,
                        sdp_ratio,
                        noise_scale,
                        noise_scale_w,
                        length_scale,
                        spealerList,
                        silenceTime,
                        filepath,
                        raw_text
                    ],
                    outputs=[LastAudioOutput],
                )
    print("推理页面已开启!")
    app.launch(share=True)