BangStarlight / clap_wrapper.py
Mahiruoshi's picture
Upload 131 files
a6a8479 verified
import sys
import torch
from transformers import ClapModel, ClapProcessor
from config import config
models = dict()
LOCAL_PATH = "./emotional/clap-htsat-fused"
processor = ClapProcessor.from_pretrained(LOCAL_PATH)
def get_clap_audio_feature(audio_data, device=config.bert_gen_config.device):
if (
sys.platform == "darwin"
and torch.backends.mps.is_available()
and device == "cpu"
):
device = "mps"
if not device:
device = "cuda"
if device not in models.keys():
if config.webui_config.fp16_run:
models[device] = ClapModel.from_pretrained(
LOCAL_PATH, torch_dtype=torch.float16
).to(device)
else:
models[device] = ClapModel.from_pretrained(LOCAL_PATH).to(device)
with torch.no_grad():
inputs = processor(
audios=audio_data, return_tensors="pt", sampling_rate=48000
).to(device)
emb = models[device].get_audio_features(**inputs).float()
return emb.T
def get_clap_text_feature(text, device=config.bert_gen_config.device):
if (
sys.platform == "darwin"
and torch.backends.mps.is_available()
and device == "cpu"
):
device = "mps"
if not device:
device = "cuda"
if device not in models.keys():
if config.webui_config.fp16_run:
models[device] = ClapModel.from_pretrained(
LOCAL_PATH, torch_dtype=torch.float16
).to(device)
else:
models[device] = ClapModel.from_pretrained(LOCAL_PATH).to(device)
with torch.no_grad():
inputs = processor(text=text, return_tensors="pt").to(device)
emb = models[device].get_text_features(**inputs).float()
return emb.T