Mahiruoshi commited on
Commit
e58b2ee
·
1 Parent(s): 408dff3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +335 -269
app.py CHANGED
@@ -2,7 +2,7 @@ import logging
2
  logging.getLogger('numba').setLevel(logging.WARNING)
3
  logging.getLogger('matplotlib').setLevel(logging.WARNING)
4
  logging.getLogger('urllib3').setLevel(logging.WARNING)
5
- import json
6
  import re
7
  import numpy as np
8
  import IPython.display as ipd
@@ -16,124 +16,251 @@ import gradio as gr
16
  import time
17
  import datetime
18
  import os
19
- import pickle
20
- import openai
21
- from scipy.io.wavfile import write
22
- def is_japanese(string):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  for ch in string:
24
  if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
25
  return True
26
  return False
27
-
28
- def is_english(string):
29
  import re
30
  pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
31
  if pattern.fullmatch(string):
32
  return True
33
  else:
34
  return False
 
 
 
 
 
35
 
36
- def to_html(chat_history):
37
- chat_html = ""
38
- for item in chat_history:
39
- if item['role'] == 'user':
40
- chat_html += f"""
41
- <div style="margin-bottom: 20px;">
42
- <div style="text-align: right; margin-right: 20px;">
43
- <span style="background-color: #4CAF50; color: black; padding: 10px; border-radius: 10px; display: inline-block; max-width: 80%; word-wrap: break-word;">
44
- {item['content']}
45
- </span>
46
- </div>
47
- </div>
48
- """
49
- else:
50
- chat_html += f"""
51
- <div style="margin-bottom: 20px;">
52
- <div style="text-align: left; margin-left: 20px;">
53
- <span style="background-color: white; color: black; padding: 10px; border-radius: 10px; display: inline-block; max-width: 80%; word-wrap: break-word;">
54
- {item['content']}
55
- </span>
56
- </div>
57
- </div>
58
- """
59
- output_html = f"""
60
- <div style="height: 400px; overflow-y: scroll; padding: 10px;">
61
- {chat_html}
62
- </div>
63
- """
64
- return output_html
65
 
66
- def extrac(text):
67
- text = re.sub("<[^>]*>","",text)
68
- result_list = re.split(r'\n', text)
69
- final_list = []
70
- for i in result_list:
71
- if is_english(i):
72
- i = romajitable.to_kana(i).katakana
73
- i = i.replace('\n','').replace(' ','')
74
- #Current length of single sentence: 20
75
- if len(i)>1:
76
- if len(i) > 20:
77
- try:
78
- cur_list = re.split(r'。|!', i)
79
- for i in cur_list:
80
- if len(i)>1:
81
- final_list.append(i+'。')
82
- except:
83
- pass
84
- else:
85
- final_list.append(i)
86
- final_list = [x for x in final_list if x != '']
87
- print(final_list)
88
- return final_list
89
 
90
- def to_numpy(tensor: torch.Tensor):
91
- return tensor.detach().cpu().numpy() if tensor.requires_grad \
92
- else tensor.detach().numpy()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
- def chatgpt(text):
95
- messages = []
96
- try:
97
- with open('log.pickle', 'rb') as f:
98
- messages = pickle.load(f)
99
- messages.append({"role": "user", "content": text},)
100
- chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
101
- reply = chat.choices[0].message.content
102
- messages.append({"role": "assistant", "content": reply})
103
- print(messages[-1])
104
- if len(messages) == 12:
105
- messages[6:10] = messages[8:]
106
- del messages[-2:]
107
- with open('log.pickle', 'wb') as f:
108
- messages2 = []
109
- pickle.dump(messages2, f)
110
- return reply,messages
111
- except:
112
- messages.append({"role": "user", "content": text},)
113
- chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
114
- reply = chat.choices[0].message.content
115
- messages.append({"role": "assistant", "content": reply})
116
- print(messages[-1])
117
- if len(messages) == 12:
118
- messages[6:10] = messages[8:]
119
- del messages[-2:]
120
- with open('log.pickle', 'wb') as f:
121
- pickle.dump(messages, f)
122
- return reply,messages
123
 
124
- def get_symbols_from_json(path):
125
- assert os.path.isfile(path)
126
- with open(path, 'r') as f:
127
- data = json.load(f)
128
- return data['symbols']
129
 
130
- def sle(language,text):
131
- text = text.replace('\n', '').replace('\r', '').replace(" ", "")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
  if language == "中文":
133
  tts_input1 = "[ZH]" + text + "[ZH]"
134
  return tts_input1
135
  elif language == "自动":
136
- tts_input1 = f"[JA]{text}[JA]" if is_japanese(text) else f"[ZH]{text}[ZH]"
137
  return tts_input1
138
  elif language == "日文":
139
  tts_input1 = "[JA]" + text + "[JA]"
@@ -143,180 +270,119 @@ def sle(language,text):
143
  return tts_input1
144
  elif language == "手动":
145
  return text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
 
147
-
148
-
149
- def get_text(text,hps_ms):
150
- text_norm = text_to_sequence(text,hps_ms.data.text_cleaners)
151
- if hps_ms.data.add_blank:
152
- text_norm = commons.intersperse(text_norm, 0)
153
- text_norm = torch.LongTensor(text_norm)
154
- return text_norm
155
-
156
- def create_tts_fn(net_g,hps,speaker_id):
157
- speaker_id = int(speaker_id)
158
- def tts_fn(is_gpt,api_key,is_audio,audiopath,repeat_time,text, language, extract, n_scale= 0.667,n_scale_w = 0.8, l_scale = 1 ):
159
- repeat_ime = int(repeat_time)
160
- if is_gpt:
161
- openai.api_key = api_key
162
- text,messages = chatgpt(text)
163
- htm = to_html(messages)
164
- else:
165
- messages = []
166
- messages.append({"role": "assistant", "content": text},)
167
- htm = to_html(messages)
168
- if not extract:
169
-
170
-
171
-
172
-
173
  t1 = time.time()
174
- stn_tst = get_text(sle(language,text),hps)
175
  with torch.no_grad():
176
- x_tst = stn_tst.unsqueeze(0).to(dev)
177
- x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
178
- sid = torch.LongTensor([speaker_id]).to(dev)
179
- audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
180
  t2 = time.time()
181
  spending_time = "推理时间为:"+str(t2-t1)+"s"
182
  print(spending_time)
183
- file_path = "subtitles.srt"
184
- try:
185
- write(audiopath + '.wav',22050,audio)
186
- if is_audio:
187
- for i in range(repeat_time):
188
- cmd = 'ffmpeg -y -i ' + audiopath + '.wav' + ' -ar 44100 '+ audiopath.replace('temp','temp'+str(i))
189
- os.system(cmd)
190
- except:
191
- pass
192
- return (hps.data.sampling_rate, audio),file_path,htm
193
- else:
194
- a = ['【','[','(','(']
195
- b = ['】',']',')',')']
196
- for i in a:
197
- text = text.replace(i,'<')
198
- for i in b:
199
- text = text.replace(i,'>')
200
- final_list = extrac(text.replace('���','').replace('”',''))
201
- audio_fin = []
202
- c = 0
203
- t = datetime.timedelta(seconds=0)
204
- for sentence in final_list:
205
- try:
206
- f1 = open("subtitles.srt",'w',encoding='utf-8')
207
- c +=1
208
- stn_tst = get_text(sle(language,sentence),hps)
209
- with torch.no_grad():
210
- x_tst = stn_tst.unsqueeze(0).to(dev)
211
- x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
212
- sid = torch.LongTensor([speaker_id]).to(dev)
213
- t1 = time.time()
214
- audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
215
- t2 = time.time()
216
- spending_time = "第"+str(c)+"句的推理时间为:"+str(t2-t1)+"s"
217
- print(spending_time)
218
- time_start = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
219
- last_time = datetime.timedelta(seconds=len(audio)/float(22050))
220
- t+=last_time
221
- time_end = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
222
- print(time_end)
223
- f1.write(str(c-1)+'\n'+time_start+' --> '+time_end+'\n'+sentence+'\n\n')
224
- audio_fin.append(audio)
225
- except:
226
- pass
227
- try:
228
- write(audiopath + '.wav',22050,np.concatenate(audio_fin))
229
- if is_audio:
230
- for i in range(repeat_time):
231
- cmd = 'ffmpeg -y -i ' + audiopath + '.wav' + ' -ar 44100 '+ audiopath.replace('temp','temp'+str(i))
232
- os.system(cmd)
233
-
234
- except:
235
- pass
236
-
237
- file_path = "subtitles.srt"
238
- return (hps.data.sampling_rate, np.concatenate(audio_fin)),file_path,htm
239
- return tts_fn
240
 
241
- if __name__ == '__main__':
242
- hps = utils.get_hparams_from_file('checkpoints/tmp/config.json')
243
- dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
244
- models = []
245
- schools = ["Seisho-Nijigasaki","Seisho-betterchinese","Nijigasaki","Nijigasaki-biaobei"]
246
- lan = ["中文","日文","自动","手动"]
247
- with open("checkpoints/info.json", "r", encoding="utf-8") as f:
248
- models_info = json.load(f)
249
- for i in models_info:
250
- checkpoint = models_info[i]["checkpoint"]
251
- phone_dict = {
252
- symbol: i for i, symbol in enumerate(symbols)
253
- }
254
- net_g = SynthesizerTrn(
255
- len(symbols),
256
- hps.data.filter_length // 2 + 1,
257
- hps.train.segment_size // hps.data.hop_length,
258
- n_speakers=hps.data.n_speakers,
259
- **hps.model).to(dev)
260
- _ = net_g.eval()
261
- _ = utils.load_checkpoint(checkpoint, net_g)
262
- school = models_info[i]
263
- speakers = school["speakers"]
264
- phone_dict = {
265
- symbol: i for i, symbol in enumerate(symbols)
266
- }
267
- content = []
268
- for j in speakers:
269
- sid = int(speakers[j]['sid'])
270
- title = school
271
- example = speakers[j]['speech']
272
- name = speakers[j]["name"]
273
- content.append((sid, name, title, example, create_tts_fn(net_g,hps,sid)))
274
- models.append(content)
275
-
276
- with gr.Blocks() as app:
277
- with gr.Accordion(label="Note", open=True):
278
- gr.Markdown(
279
- "# <center>Seisho-Nijigasaki vits-models with chatgpt support\n"
280
- "# <center>少歌&&虹团vits\n"
281
- "## <center> Please do not generate content that could infringe upon the rights or cause harm to individuals or organizations.\n"
282
- "## <center> 四个模型包含了少歌及虹团的大部分角色,第二个正在训练的模型加入了梁芷柔和墨小菊,目前已可以进行质量较高的中文合成。数据集版权归官方所有,严禁商用及恶意使用\n"
283
- "## <center> 请不要生成会对个人以及企划造成侵害,带有侮辱性的言论,自觉遵守相关法律 >>> http://www.cac.gov.cn/2023-04/11/c_1682854275475410.htm \n"
284
- "## <center> 效果不佳时可将噪音和噪音偏差调为0.自带chatgpt支持,长句分割支持,srt字幕生成,可修改音频生成路径至live2d语音路径,建议本地使用。\n"
285
-
286
- )
287
- with gr.Tabs():
288
- for i in schools:
289
- with gr.TabItem(i):
290
- for (sid, name, title, example, tts_fn) in models[schools.index(i)]:
291
- with gr.TabItem(name):
292
- with gr.Column():
293
- with gr.Row():
294
- with gr.Row():
295
- gr.Markdown(
296
- '<div align="center">'
297
- f'<img style="width:auto;height:400px;" src="file/image/{name}.png">'
298
- '</div>'
299
- )
300
- output_UI = gr.outputs.HTML()
301
- with gr.Row():
302
- with gr.Column(scale=0.85):
303
- input1 = gr.TextArea(label="Text", value=example,lines = 1)
304
- with gr.Column(scale=0.15, min_width=0):
305
- btnVC = gr.Button("Send")
306
- output1 = gr.Audio(label="采样率22050")
307
- with gr.Accordion(label="Setting(TTS)", open=False):
308
- input2 = gr.Dropdown(label="Language", choices=lan, value="自动", interactive=True)
309
- input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.6)
310
- input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.668)
311
- input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
312
- with gr.Accordion(label="Advanced Setting(GPT3.5接口+长句子合成,建议克隆本仓库后运行main.py)", open=False):
313
- input3 = gr.Checkbox(value=False, label="长句切割(小说合成)")
314
- output2 = gr.outputs.File(label="字幕文件:subtitles.srt")
315
- api_input1 = gr.Checkbox(value=False, label="接入chatgpt")
316
- api_input2 = gr.TextArea(label="api-key",lines=1,value = '见 https://openai.com/blog/openai-api')
317
- audio_input1 = gr.Checkbox(value=False, label="修改音频路径(live2d)")
318
- audio_input2 = gr.TextArea(label="音频路径",lines=1,value = '#参考 D:/app_develop/live2d_whole/2010002/sounds/temp.wav')
319
- audio_input3 = gr.Dropdown(label="重复生成次数", choices=list(range(101)), value='0', interactive=True)
320
- btnVC.click(tts_fn, inputs=[api_input1,api_input2,audio_input1,audio_input2,audio_input3,input1,input2,input3,input4,input5,input6], outputs=[output1,output2,output_UI])
321
-
322
- app.launch()
 
2
  logging.getLogger('numba').setLevel(logging.WARNING)
3
  logging.getLogger('matplotlib').setLevel(logging.WARNING)
4
  logging.getLogger('urllib3').setLevel(logging.WARNING)
5
+ import romajitable
6
  import re
7
  import numpy as np
8
  import IPython.display as ipd
 
16
  import time
17
  import datetime
18
  import os
19
+ import librosa
20
+ from mel_processing import spectrogram_torch
21
+ class VitsGradio:
22
+ def __init__(self):
23
+ self.dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
24
+ self.lan = ["中文","日文","自动","手动"]
25
+ self.idols = ["c1","c2","高咲侑","歩夢","かすみ","しずく","果林","愛","彼方","せつ菜","璃奈","栞子","エマ","ランジュ","ミア","華恋","まひる","なな","クロディーヌ","ひかり",'純那',"香子","真矢","双葉","ミチル","メイファン","やちよ","晶","いちえ","ゆゆ子","塁","珠緒","あるる","ララフィン","美空","静羽","あるる"]
26
+ self.modelPaths = []
27
+ for root,dirs,files in os.walk("checkpoints"):
28
+ for dir in dirs:
29
+ self.modelPaths.append(dir)
30
+ with gr.Blocks() as self.Vits:
31
+ gr.Markdown(
32
+ "## <center> Lovelive虹团中日双语VITS\n"
33
+ "### <center> 请不要生成会对个人以及企划造成侵害的内容\n"
34
+ "<div align='center'>目前有标贝普通话版,去标贝版,少歌模型还是大饼状态</div>"
35
+ '<div align="center"><a>参数说明:由于爱抖露们过于有感情,合成日语时建议将噪声比例调节至0.2-0.3区间,噪声偏差对应着每个字之间的间隔,对普通话影响较大,duration代表整体语速</div>'
36
+ '<div align="center"><a>合成前请先选择模型,否则第一次合成不一定成功。长段落/小说合成建议colab或本地运行</div>')
37
+ with gr.Tab("TTS合成"):
38
+ with gr.Row():
39
+ with gr.Column():
40
+ with gr.Row():
41
+ with gr.Column():
42
+ input1 = gr.TextArea(label="Text", value="为什么你会那么熟练啊?你和雪菜亲过多少次了")
43
+ input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True)
44
+ input3 = gr.Dropdown(label="Speaker", choices=self.idols, value="歩夢", interactive=True)
45
+ btnVC = gr.Button("Submit")
46
+ with gr.Column():
47
+ input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.267)
48
+ input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.7)
49
+ input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
50
+ output1 = gr.Audio(label="采样率22050")
51
+ btnVC.click(self.infer, inputs=[input1, input2, input3, input4, input5, input6], outputs=[output1])
52
+ with gr.Tab("选择模型"):
53
+ with gr.Column():
54
+ modelstrs = gr.Dropdown(label = "模型", choices = self.modelPaths, value = self.modelPaths[0], type = "value")
55
+ btnMod = gr.Button("载入模型")
56
+ statusa = gr.TextArea()
57
+ btnMod.click(self.loadCk, inputs=[modelstrs], outputs = [statusa])
58
+ with gr.Tab("Voice Conversion"):
59
+ gr.Markdown("""
60
+ 录制或上传声音,并选择要转换的音色。
61
+ """)
62
+ with gr.Column():
63
+ record_audio = gr.Audio(label="record your voice", source="microphone")
64
+ upload_audio = gr.Audio(label="or upload audio here", source="upload")
65
+ source_speaker = gr.Dropdown(choices=self.idols, value="歩夢", label="source speaker")
66
+ target_speaker = gr.Dropdown(choices=self.idols, value="歩夢", label="target speaker")
67
+ with gr.Column():
68
+ message_box = gr.Textbox(label="Message")
69
+ converted_audio = gr.Audio(label='converted audio')
70
+ btn = gr.Button("Convert!")
71
+ btn.click(self.vc_fn, inputs=[source_speaker, target_speaker, record_audio, upload_audio],
72
+ outputs=[message_box, converted_audio])
73
+ with gr.Tab("小说合成(带字幕)"):
74
+ with gr.Row():
75
+ with gr.Column():
76
+ with gr.Row():
77
+ with gr.Column():
78
+ input1 = gr.TextArea(label="建议colab或本地克隆后运行本仓库", value="为什么你会那么熟练啊?你和雪菜亲过多少次了")
79
+ input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True)
80
+ input3 = gr.Dropdown(label="Speaker", choices=self.idols, value="歩夢", interactive=True)
81
+ btnVC = gr.Button("Submit")
82
+ with gr.Column():
83
+ input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.267)
84
+ input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.7)
85
+ input6 = gr.Slider(minimum=0.1, maximum=10, label="Duration", value=1)
86
+ output1 = gr.Audio(label="采样率22050")
87
+ subtitle = gr.outputs.File(label="字幕文件:subtitles.srt")
88
+ btnVC.click(self.infer2, inputs=[input1, input2, input3, input4, input5, input6], outputs=[output1,subtitle])
89
+
90
+ def loadCk(self,path):
91
+ self.hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
92
+ self.net_g = SynthesizerTrn(
93
+ len(symbols),
94
+ self.hps.data.filter_length // 2 + 1,
95
+ self.hps.train.segment_size // self.hps.data.hop_length,
96
+ n_speakers=self.hps.data.n_speakers,
97
+ **self.hps.model).to(self.dev)
98
+ _ = self.net_g.eval()
99
+ _ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", self.net_g)
100
+ return "success"
101
+
102
+ def get_text(self,text):
103
+ text_norm = text_to_sequence(text,self.hps.data.text_cleaners)
104
+ if self.hps.data.add_blank:
105
+ text_norm = commons.intersperse(text_norm, 0)
106
+ text_norm = torch.LongTensor(text_norm)
107
+ return text_norm
108
+
109
+ def is_japanese(self,string):
110
  for ch in string:
111
  if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
112
  return True
113
  return False
114
+
115
+ def is_english(self,string):
116
  import re
117
  pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
118
  if pattern.fullmatch(string):
119
  return True
120
  else:
121
  return False
122
+
123
+ def selection(self,speaker):
124
+ if speaker == "高咲侑":
125
+ spk = 0
126
+ return spk
127
 
128
+ elif speaker == "歩夢":
129
+ spk = 1
130
+ return spk
131
+
132
+ elif speaker == "かすみ":
133
+ spk = 2
134
+ return spk
135
+
136
+ elif speaker == "しずく":
137
+ spk = 3
138
+ return spk
139
+
140
+ elif speaker == "果林":
141
+ spk = 4
142
+ return spk
143
+
144
+ elif speaker == "愛":
145
+ spk = 5
146
+ return spk
 
 
 
 
 
 
 
 
 
 
147
 
148
+ elif speaker == "彼方":
149
+ spk = 6
150
+ return spk
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
 
152
+ elif speaker == "せつ菜":
153
+ spk = 7
154
+ return spk
155
+ elif speaker == "エマ":
156
+ spk = 8
157
+ return spk
158
+ elif speaker == "璃奈":
159
+ spk = 9
160
+ return spk
161
+ elif speaker == "栞子":
162
+ spk = 10
163
+ return spk
164
+ elif speaker == "ランジュ":
165
+ spk = 11
166
+ return spk
167
+ elif speaker == "ミア":
168
+ spk = 12
169
+ return spk
170
+
171
+ elif speaker == "派蒙":
172
+ spk = 16
173
+ return spk
174
+
175
+ elif speaker == "c1":
176
+ spk = 18
177
+ return spk
178
 
179
+ elif speaker == "c2":
180
+ spk = 19
181
+ return spk
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182
 
183
+ elif speaker == "華恋":
184
+ spk = 21
185
+ return spk
 
 
186
 
187
+ elif speaker == "まひる":
188
+ spk = 22
189
+ return spk
190
+
191
+ elif speaker == "なな":
192
+ spk = 23
193
+ return spk
194
+
195
+ elif speaker == "クロディーヌ":
196
+ spk = 24
197
+ return spk
198
+
199
+ elif speaker == "ひかり":
200
+ spk = 25
201
+ return spk
202
+
203
+ elif speaker == "純那":
204
+ spk = 26
205
+ return spk
206
+
207
+ elif speaker == "香子":
208
+ spk = 27
209
+ return spk
210
+
211
+ elif speaker == "真矢":
212
+ spk = 28
213
+ return spk
214
+ elif speaker == "双葉":
215
+ spk = 29
216
+ return spk
217
+ elif speaker == "ミチル":
218
+ spk = 30
219
+ return spk
220
+ elif speaker == "メイファン":
221
+ spk = 31
222
+ return spk
223
+ elif speaker == "やちよ":
224
+ spk = 32
225
+ return spk
226
+ elif speaker == "晶":
227
+ spk = 33
228
+ return spk
229
+ elif speaker == "いちえ":
230
+ spk = 34
231
+ return spk
232
+ elif speaker == "ゆゆ子":
233
+ spk = 35
234
+ return spk
235
+ elif speaker == "塁":
236
+ spk = 36
237
+ return spk
238
+ elif speaker == "珠緒":
239
+ spk = 37
240
+ return spk
241
+ elif speaker == "あるる":
242
+ spk = 38
243
+ return spk
244
+ elif speaker == "ララフィン":
245
+ spk = 39
246
+ return spk
247
+ elif speaker == "美空":
248
+ spk = 40
249
+ return spk
250
+ elif speaker == "静羽":
251
+ spk = 41
252
+ return spk
253
+ else:
254
+ return 0
255
+
256
+
257
+ def sle(self,language,text):
258
+ text = text.replace('\n','。').replace(' ',',')
259
  if language == "中文":
260
  tts_input1 = "[ZH]" + text + "[ZH]"
261
  return tts_input1
262
  elif language == "自动":
263
+ tts_input1 = f"[JA]{text}[JA]" if self.is_japanese(text) else f"[ZH]{text}[ZH]"
264
  return tts_input1
265
  elif language == "日文":
266
  tts_input1 = "[JA]" + text + "[JA]"
 
270
  return tts_input1
271
  elif language == "手动":
272
  return text
273
+
274
+ def extrac(self,text):
275
+ text = re.sub("<[^>]*>","",text)
276
+ result_list = re.split(r'\n', text)
277
+ final_list = []
278
+ for i in result_list:
279
+ if self.is_english(i):
280
+ i = romajitable.to_kana(i).katakana
281
+ i = i.replace('\n','').replace(' ','')
282
+ #Current length of single sentence: 20
283
+ if len(i)>1:
284
+ if len(i) > 20:
285
+ try:
286
+ cur_list = re.split(r'。|!', i)
287
+ for i in cur_list:
288
+ if len(i)>1:
289
+ final_list.append(i+'。')
290
+ except:
291
+ pass
292
+ else:
293
+ final_list.append(i)
294
+ final_list = [x for x in final_list if x != '']
295
+ print(final_list)
296
+ return final_list
297
+
298
+ def vc_fn(self,original_speaker, target_speaker, record_audio, upload_audio):
299
+ input_audio = record_audio if record_audio is not None else upload_audio
300
+ if input_audio is None:
301
+ return "You need to record or upload an audio", None
302
+ sampling_rate, audio = input_audio
303
+ original_speaker_id = self.selection(original_speaker)
304
+ target_speaker_id = self.selection(target_speaker)
305
 
306
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
307
+ if len(audio.shape) > 1:
308
+ audio = librosa.to_mono(audio.transpose(1, 0))
309
+ if sampling_rate != self.hps.data.sampling_rate:
310
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=self.hps.data.sampling_rate)
311
+ with torch.no_grad():
312
+ y = torch.FloatTensor(audio)
313
+ y = y / max(-y.min(), y.max()) / 0.99
314
+ y = y.to(self.dev)
315
+ y = y.unsqueeze(0)
316
+ spec = spectrogram_torch(y, self.hps.data.filter_length,
317
+ self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
318
+ center=False).to(self.dev)
319
+ spec_lengths = torch.LongTensor([spec.size(-1)]).to(self.dev)
320
+ sid_src = torch.LongTensor([original_speaker_id]).to(self.dev)
321
+ sid_tgt = torch.LongTensor([target_speaker_id]).to(self.dev)
322
+ audio = self.net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
323
+ 0, 0].data.cpu().float().numpy()
324
+ del y, spec, spec_lengths, sid_src, sid_tgt
325
+ return "Success", (self.hps.data.sampling_rate, audio)
326
+
327
+ def infer(self, text ,language, speaker_id,n_scale= 0.667,n_scale_w = 0.8, l_scale = 1):
328
+ try:
329
+ speaker_id = int(self.selection(speaker_id))
 
 
330
  t1 = time.time()
331
+ stn_tst = self.get_text(self.sle(language,text))
332
  with torch.no_grad():
333
+ x_tst = stn_tst.unsqueeze(0).to(self.dev)
334
+ x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(self.dev)
335
+ sid = torch.LongTensor([speaker_id]).to(self.dev)
336
+ audio = self.net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
337
  t2 = time.time()
338
  spending_time = "推理时间为:"+str(t2-t1)+"s"
339
  print(spending_time)
340
+ return (self.hps.data.sampling_rate, audio)
341
+ except:
342
+ self.hps = utils.get_hparams_from_file(f"checkpoints/biaobei/config.json")
343
+ self.net_g = SynthesizerTrn(
344
+ len(symbols),
345
+ self.hps.data.filter_length // 2 + 1,
346
+ self.hps.train.segment_size // self.hps.data.hop_length,
347
+ n_speakers=self.hps.data.n_speakers,
348
+ **self.hps.model).to(self.dev)
349
+ _ = self.net_g.eval()
350
+ _ = utils.load_checkpoint(f"checkpoints/biaobei/model.pth", self.net_g)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
351
 
352
+ def infer2(self, text ,language, speaker_id,n_scale= 0.667,n_scale_w = 0.8, l_scale = 1):
353
+ speaker_id = int(self.selection(speaker_id))
354
+ a = ['【','[','(','(']
355
+ b = ['】',']',')',')']
356
+ for i in a:
357
+ text = text.replace(i,'<')
358
+ for i in b:
359
+ text = text.replace(i,'>')
360
+ final_list = self.extrac(text.replace('“','').replace('”',''))
361
+ audio_fin = []
362
+ c = 0
363
+ t = datetime.timedelta(seconds=0)
364
+ f1 = open("subtitles.srt",'w',encoding='utf-8')
365
+ for sentence in final_list:
366
+ c +=1
367
+ stn_tst = self.get_text(self.sle(language,sentence))
368
+ with torch.no_grad():
369
+ x_tst = stn_tst.unsqueeze(0).to(self.dev)
370
+ x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(self.dev)
371
+ sid = torch.LongTensor([speaker_id]).to(self.dev)
372
+ t1 = time.time()
373
+ audio = self.net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
374
+ t2 = time.time()
375
+ spending_time = "第"+str(c)+"句的推理时间为:"+str(t2-t1)+"s"
376
+ print(spending_time)
377
+ time_start = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
378
+ last_time = datetime.timedelta(seconds=len(audio)/float(22050))
379
+ t+=last_time
380
+ time_end = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
381
+ print(time_end)
382
+ f1.write(str(c-1)+'\n'+time_start+' --> '+time_end+'\n'+sentence+'\n\n')
383
+ audio_fin.append(audio)
384
+ file_path = "subtitles.srt"
385
+ return (self.hps.data.sampling_rate, np.concatenate(audio_fin)),file_path
386
+ print("开始部署")
387
+ grVits = VitsGradio()
388
+ grVits.Vits.launch()