Mahiruoshi
commited on
Commit
•
996feab
1
Parent(s):
fe63b85
Upload 31 files
Browse files- .gitattributes +1 -4
- README.md +6 -5
- app.py +387 -0
- attentions.py +300 -0
- checkpoints/ShojoKageki/config.json +54 -0
- checkpoints/ShojoKageki/model-0ld.pth +3 -0
- checkpoints/ShojoKageki/model-1.pth +3 -0
- checkpoints/ShojoKageki/model.pth +3 -0
- checkpoints/biaobei/config.json +54 -0
- checkpoints/biaobei/model.pth +3 -0
- checkpoints/default/config.json +54 -0
- checkpoints/default/model.pth +3 -0
- checkpoints/info.json +424 -0
- checkpoints/paimeng/config.json +54 -0
- checkpoints/paimeng/model.pth +3 -0
- checkpoints/tmp/config.json +54 -0
- checkpoints/tmp/model.pth +3 -0
- commons.py +97 -0
- jieba/dict.txt +0 -0
- models.py +498 -0
- modules.py +387 -0
- requirements.txt +18 -0
- text/LICENSE +19 -0
- text/__init__.py +32 -0
- text/cleaners.py +106 -0
- text/japanese.py +153 -0
- text/korean.py +205 -0
- text/mandarin.py +328 -0
- text/sanskrit.py +62 -0
- transforms.py +193 -0
- utils.py +76 -0
.gitattributes
CHANGED
@@ -2,13 +2,11 @@
|
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
*.npy filter=lfs diff=lfs merge=lfs -text
|
@@ -16,13 +14,12 @@
|
|
16 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
*.pkl filter=lfs diff=lfs merge=lfs -text
|
|
|
22 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
|
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
|
|
5 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
|
|
10 |
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
*.npy filter=lfs diff=lfs merge=lfs -text
|
|
|
14 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
15 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
16 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
|
|
17 |
*.pickle filter=lfs diff=lfs merge=lfs -text
|
18 |
*.pkl filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
21 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
22 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
|
|
23 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
24 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
25 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
title: Lovelive
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Lovelive VITS JPZH
|
3 |
+
emoji: 📈
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.4.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: cc-by-nc-3.0
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
3 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
4 |
+
logging.getLogger('urllib3').setLevel(logging.WARNING)
|
5 |
+
import romajitable
|
6 |
+
import re
|
7 |
+
import numpy as np
|
8 |
+
import IPython.display as ipd
|
9 |
+
import torch
|
10 |
+
import commons
|
11 |
+
import utils
|
12 |
+
from models import SynthesizerTrn
|
13 |
+
from text import text_to_sequence
|
14 |
+
import gradio as gr
|
15 |
+
import time
|
16 |
+
import datetime
|
17 |
+
import os
|
18 |
+
import librosa
|
19 |
+
class VitsGradio:
|
20 |
+
def __init__(self):
|
21 |
+
self.dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
22 |
+
self.lan = ["中文","日文","自动","手动"]
|
23 |
+
self.idols = ["c1","c2","高咲侑","歩夢","かすみ","しずく","果林","愛","彼方","せつ菜","璃奈","栞子","エマ","ランジュ","ミア","華恋","まひる","なな","クロディーヌ","ひかり",'純那',"香子","真矢","双葉","ミチル","メイファン","やちよ","晶","いちえ","ゆゆ子","塁","珠緒","あるる","ララフィン","美空","静羽","あるる"]
|
24 |
+
self.modelPaths = []
|
25 |
+
for root,dirs,files in os.walk("checkpoints"):
|
26 |
+
for dir in dirs:
|
27 |
+
self.modelPaths.append(dir)
|
28 |
+
with gr.Blocks() as self.Vits:
|
29 |
+
gr.Markdown(
|
30 |
+
"## <center> Lovelive虹团中日双语VITS\n"
|
31 |
+
"### <center> 请不要生成会对个人以及企划造成侵害的内容\n"
|
32 |
+
"<div align='center'>目前有标贝普通话版,去标贝版,少歌模型还是大饼状态</div>"
|
33 |
+
'<div align="center"><a>参数说明:由于爱抖露们过于有感情,合成日语时建议将噪声比例调节至0.2-0.3区间,噪声偏差对应着每个字之间的间隔,对普通话影响较大,duration代表整体语速</div>'
|
34 |
+
'<div align="center"><a>合成前请先选择模型,否则第一次合成不一定成功。长段落/小说合成建议colab或本地运行</div>')
|
35 |
+
with gr.Tab("TTS合成"):
|
36 |
+
with gr.Row():
|
37 |
+
with gr.Column():
|
38 |
+
with gr.Row():
|
39 |
+
with gr.Column():
|
40 |
+
input1 = gr.TextArea(label="Text", value="为什么你会那么熟练啊?你和雪菜亲过多少次了")
|
41 |
+
input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True)
|
42 |
+
input3 = gr.Dropdown(label="Speaker", choices=self.idols, value="歩夢", interactive=True)
|
43 |
+
btnVC = gr.Button("Submit")
|
44 |
+
with gr.Column():
|
45 |
+
input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.267)
|
46 |
+
input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.7)
|
47 |
+
input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
|
48 |
+
output1 = gr.Audio(label="采样率22050")
|
49 |
+
btnVC.click(self.infer, inputs=[input1, input2, input3, input4, input5, input6], outputs=[output1])
|
50 |
+
with gr.Tab("选择模型"):
|
51 |
+
with gr.Column():
|
52 |
+
modelstrs = gr.Dropdown(label = "模型", choices = self.modelPaths, value = self.modelPaths[0], type = "value")
|
53 |
+
btnMod = gr.Button("载入模型")
|
54 |
+
statusa = gr.TextArea()
|
55 |
+
btnMod.click(self.loadCk, inputs=[modelstrs], outputs = [statusa])
|
56 |
+
with gr.Tab("Voice Conversion"):
|
57 |
+
gr.Markdown("""
|
58 |
+
录制或上传声音,并选择要转换的音色。
|
59 |
+
""")
|
60 |
+
with gr.Column():
|
61 |
+
record_audio = gr.Audio(label="record your voice", source="microphone")
|
62 |
+
upload_audio = gr.Audio(label="or upload audio here", source="upload")
|
63 |
+
source_speaker = gr.Dropdown(choices=self.idols, value="歩夢", label="source speaker")
|
64 |
+
target_speaker = gr.Dropdown(choices=self.idols, value="歩夢", label="target speaker")
|
65 |
+
with gr.Column():
|
66 |
+
message_box = gr.Textbox(label="Message")
|
67 |
+
converted_audio = gr.Audio(label='converted audio')
|
68 |
+
btn = gr.Button("Convert!")
|
69 |
+
btn.click(self.vc_fn, inputs=[source_speaker, target_speaker, record_audio, upload_audio],
|
70 |
+
outputs=[message_box, converted_audio])
|
71 |
+
with gr.Tab("小说合成(带字幕)"):
|
72 |
+
with gr.Row():
|
73 |
+
with gr.Column():
|
74 |
+
with gr.Row():
|
75 |
+
with gr.Column():
|
76 |
+
input1 = gr.TextArea(label="建议colab或本地克隆后运行本仓库", value="为什么你会那么熟练啊?你和雪菜亲过多少次了")
|
77 |
+
input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True)
|
78 |
+
input3 = gr.Dropdown(label="Speaker", choices=self.idols, value="歩夢", interactive=True)
|
79 |
+
btnVC = gr.Button("Submit")
|
80 |
+
with gr.Column():
|
81 |
+
input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.267)
|
82 |
+
input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.7)
|
83 |
+
input6 = gr.Slider(minimum=0.1, maximum=10, label="Duration", value=1)
|
84 |
+
output1 = gr.Audio(label="采样率22050")
|
85 |
+
subtitle = gr.outputs.File(label="字幕文件:subtitles.srt")
|
86 |
+
btnVC.click(self.infer2, inputs=[input1, input2, input3, input4, input5, input6], outputs=[output1,subtitle])
|
87 |
+
|
88 |
+
def loadCk(self,path):
|
89 |
+
self.hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
|
90 |
+
n_symbols = len(self.hps.symbols) if 'symbols' in self.hps.keys() else 0
|
91 |
+
self.net_g = SynthesizerTrn(
|
92 |
+
n_symbols,
|
93 |
+
self.hps.data.filter_length // 2 + 1,
|
94 |
+
self.hps.train.segment_size // self.hps.data.hop_length,
|
95 |
+
n_speakers=self.hps.data.n_speakers,
|
96 |
+
**self.hps.model).to(self.dev)
|
97 |
+
_ = self.net_g.eval()
|
98 |
+
_ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", self.net_g)
|
99 |
+
return "success"
|
100 |
+
|
101 |
+
def get_text(self,text):
|
102 |
+
text_norm = text_to_sequence(text,self.hps.symbols,self.hps.data.text_cleaners)
|
103 |
+
if self.hps.data.add_blank:
|
104 |
+
text_norm = commons.intersperse(text_norm, 0)
|
105 |
+
text_norm = torch.LongTensor(text_norm)
|
106 |
+
return text_norm
|
107 |
+
|
108 |
+
def is_japanese(self,string):
|
109 |
+
for ch in string:
|
110 |
+
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
|
111 |
+
return True
|
112 |
+
return False
|
113 |
+
|
114 |
+
def is_english(self,string):
|
115 |
+
import re
|
116 |
+
pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
|
117 |
+
if pattern.fullmatch(string):
|
118 |
+
return True
|
119 |
+
else:
|
120 |
+
return False
|
121 |
+
|
122 |
+
def selection(self,speaker):
|
123 |
+
if speaker == "高咲侑":
|
124 |
+
spk = 0
|
125 |
+
return spk
|
126 |
+
|
127 |
+
elif speaker == "歩夢":
|
128 |
+
spk = 1
|
129 |
+
return spk
|
130 |
+
|
131 |
+
elif speaker == "かすみ":
|
132 |
+
spk = 2
|
133 |
+
return spk
|
134 |
+
|
135 |
+
elif speaker == "しずく":
|
136 |
+
spk = 3
|
137 |
+
return spk
|
138 |
+
|
139 |
+
elif speaker == "果林":
|
140 |
+
spk = 4
|
141 |
+
return spk
|
142 |
+
|
143 |
+
elif speaker == "愛":
|
144 |
+
spk = 5
|
145 |
+
return spk
|
146 |
+
|
147 |
+
elif speaker == "彼方":
|
148 |
+
spk = 6
|
149 |
+
return spk
|
150 |
+
|
151 |
+
elif speaker == "せつ菜":
|
152 |
+
spk = 7
|
153 |
+
return spk
|
154 |
+
elif speaker == "エマ":
|
155 |
+
spk = 8
|
156 |
+
return spk
|
157 |
+
elif speaker == "璃奈":
|
158 |
+
spk = 9
|
159 |
+
return spk
|
160 |
+
elif speaker == "栞子":
|
161 |
+
spk = 10
|
162 |
+
return spk
|
163 |
+
elif speaker == "ランジュ":
|
164 |
+
spk = 11
|
165 |
+
return spk
|
166 |
+
elif speaker == "ミア":
|
167 |
+
spk = 12
|
168 |
+
return spk
|
169 |
+
|
170 |
+
elif speaker == "派蒙":
|
171 |
+
spk = 16
|
172 |
+
return spk
|
173 |
+
|
174 |
+
elif speaker == "c1":
|
175 |
+
spk = 18
|
176 |
+
return spk
|
177 |
+
|
178 |
+
elif speaker == "c2":
|
179 |
+
spk = 19
|
180 |
+
return spk
|
181 |
+
|
182 |
+
elif speaker == "華恋":
|
183 |
+
spk = 21
|
184 |
+
return spk
|
185 |
+
|
186 |
+
elif speaker == "まひる":
|
187 |
+
spk = 22
|
188 |
+
return spk
|
189 |
+
|
190 |
+
elif speaker == "なな":
|
191 |
+
spk = 23
|
192 |
+
return spk
|
193 |
+
|
194 |
+
elif speaker == "クロディーヌ":
|
195 |
+
spk = 24
|
196 |
+
return spk
|
197 |
+
|
198 |
+
elif speaker == "ひかり":
|
199 |
+
spk = 25
|
200 |
+
return spk
|
201 |
+
|
202 |
+
elif speaker == "純那":
|
203 |
+
spk = 26
|
204 |
+
return spk
|
205 |
+
|
206 |
+
elif speaker == "香子":
|
207 |
+
spk = 27
|
208 |
+
return spk
|
209 |
+
|
210 |
+
elif speaker == "真矢":
|
211 |
+
spk = 28
|
212 |
+
return spk
|
213 |
+
elif speaker == "双葉":
|
214 |
+
spk = 29
|
215 |
+
return spk
|
216 |
+
elif speaker == "ミチル":
|
217 |
+
spk = 30
|
218 |
+
return spk
|
219 |
+
elif speaker == "メイファン":
|
220 |
+
spk = 31
|
221 |
+
return spk
|
222 |
+
elif speaker == "やちよ":
|
223 |
+
spk = 32
|
224 |
+
return spk
|
225 |
+
elif speaker == "晶":
|
226 |
+
spk = 33
|
227 |
+
return spk
|
228 |
+
elif speaker == "いちえ":
|
229 |
+
spk = 34
|
230 |
+
return spk
|
231 |
+
elif speaker == "ゆゆ子":
|
232 |
+
spk = 35
|
233 |
+
return spk
|
234 |
+
elif speaker == "塁":
|
235 |
+
spk = 36
|
236 |
+
return spk
|
237 |
+
elif speaker == "珠緒":
|
238 |
+
spk = 37
|
239 |
+
return spk
|
240 |
+
elif speaker == "あるる":
|
241 |
+
spk = 38
|
242 |
+
return spk
|
243 |
+
elif speaker == "ララフィン":
|
244 |
+
spk = 39
|
245 |
+
return spk
|
246 |
+
elif speaker == "美空":
|
247 |
+
spk = 40
|
248 |
+
return spk
|
249 |
+
elif speaker == "静羽":
|
250 |
+
spk = 41
|
251 |
+
return spk
|
252 |
+
else:
|
253 |
+
return 0
|
254 |
+
|
255 |
+
|
256 |
+
def sle(self,language,text):
|
257 |
+
text = text.replace('\n','。').replace(' ',',')
|
258 |
+
if language == "中文":
|
259 |
+
tts_input1 = "[ZH]" + text + "[ZH]"
|
260 |
+
return tts_input1
|
261 |
+
elif language == "自动":
|
262 |
+
tts_input1 = f"[JA]{text}[JA]" if self.is_japanese(text) else f"[ZH]{text}[ZH]"
|
263 |
+
return tts_input1
|
264 |
+
elif language == "日文":
|
265 |
+
tts_input1 = "[JA]" + text + "[JA]"
|
266 |
+
return tts_input1
|
267 |
+
elif language == "英文":
|
268 |
+
tts_input1 = "[EN]" + text + "[EN]"
|
269 |
+
return tts_input1
|
270 |
+
elif language == "手动":
|
271 |
+
return text
|
272 |
+
|
273 |
+
def extrac(self,text):
|
274 |
+
text = re.sub("<[^>]*>","",text)
|
275 |
+
result_list = re.split(r'\n', text)
|
276 |
+
final_list = []
|
277 |
+
for i in result_list:
|
278 |
+
if self.is_english(i):
|
279 |
+
i = romajitable.to_kana(i).katakana
|
280 |
+
i = i.replace('\n','').replace(' ','')
|
281 |
+
#Current length of single sentence: 20
|
282 |
+
if len(i)>1:
|
283 |
+
if len(i) > 20:
|
284 |
+
try:
|
285 |
+
cur_list = re.split(r'。|!', i)
|
286 |
+
for i in cur_list:
|
287 |
+
if len(i)>1:
|
288 |
+
final_list.append(i+'。')
|
289 |
+
except:
|
290 |
+
pass
|
291 |
+
else:
|
292 |
+
final_list.append(i)
|
293 |
+
final_list = [x for x in final_list if x != '']
|
294 |
+
print(final_list)
|
295 |
+
return final_list
|
296 |
+
|
297 |
+
def vc_fn(self,original_speaker, target_speaker, record_audio, upload_audio):
|
298 |
+
input_audio = record_audio if record_audio is not None else upload_audio
|
299 |
+
if input_audio is None:
|
300 |
+
return "You need to record or upload an audio", None
|
301 |
+
sampling_rate, audio = input_audio
|
302 |
+
original_speaker_id = self.selection(original_speaker)
|
303 |
+
target_speaker_id = self.selection(target_speaker)
|
304 |
+
|
305 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
306 |
+
if len(audio.shape) > 1:
|
307 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
308 |
+
if sampling_rate != self.hps.data.sampling_rate:
|
309 |
+
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=self.hps.data.sampling_rate)
|
310 |
+
with torch.no_grad():
|
311 |
+
y = torch.FloatTensor(audio)
|
312 |
+
y = y / max(-y.min(), y.max()) / 0.99
|
313 |
+
y = y.to(self.dev)
|
314 |
+
y = y.unsqueeze(0)
|
315 |
+
spec = spectrogram_torch(y, self.hps.data.filter_length,
|
316 |
+
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
|
317 |
+
center=False).to(self.dev)
|
318 |
+
spec_lengths = torch.LongTensor([spec.size(-1)]).to(self.dev)
|
319 |
+
sid_src = torch.LongTensor([original_speaker_id]).to(self.dev)
|
320 |
+
sid_tgt = torch.LongTensor([target_speaker_id]).to(self.dev)
|
321 |
+
audio = self.net_g.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
|
322 |
+
0, 0].data.cpu().float().numpy()
|
323 |
+
del y, spec, spec_lengths, sid_src, sid_tgt
|
324 |
+
return "Success", (self.hps.data.sampling_rate, audio)
|
325 |
+
|
326 |
+
def infer(self, text ,language, speaker_id,n_scale= 0.667,n_scale_w = 0.8, l_scale = 1):
|
327 |
+
try:
|
328 |
+
speaker_id = int(self.selection(speaker_id))
|
329 |
+
t1 = time.time()
|
330 |
+
stn_tst = self.get_text(self.sle(language,text))
|
331 |
+
with torch.no_grad():
|
332 |
+
x_tst = stn_tst.unsqueeze(0).to(self.dev)
|
333 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(self.dev)
|
334 |
+
sid = torch.LongTensor([speaker_id]).to(self.dev)
|
335 |
+
audio = self.net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
|
336 |
+
t2 = time.time()
|
337 |
+
spending_time = "推理时间为:"+str(t2-t1)+"s"
|
338 |
+
print(spending_time)
|
339 |
+
return (self.hps.data.sampling_rate, audio)
|
340 |
+
except:
|
341 |
+
self.hps = utils.get_hparams_from_file(f"checkpoints/biaobei/config.json")
|
342 |
+
self.net_g = SynthesizerTrn(
|
343 |
+
len(symbols),
|
344 |
+
self.hps.data.filter_length // 2 + 1,
|
345 |
+
self.hps.train.segment_size // self.hps.data.hop_length,
|
346 |
+
n_speakers=self.hps.data.n_speakers,
|
347 |
+
**self.hps.model).to(self.dev)
|
348 |
+
_ = self.net_g.eval()
|
349 |
+
_ = utils.load_checkpoint(f"checkpoints/biaobei/model.pth", self.net_g)
|
350 |
+
|
351 |
+
def infer2(self, text ,language, speaker_id,n_scale= 0.667,n_scale_w = 0.8, l_scale = 1):
|
352 |
+
speaker_id = int(self.selection(speaker_id))
|
353 |
+
a = ['【','[','(','(']
|
354 |
+
b = ['】',']',')',')']
|
355 |
+
for i in a:
|
356 |
+
text = text.replace(i,'<')
|
357 |
+
for i in b:
|
358 |
+
text = text.replace(i,'>')
|
359 |
+
final_list = self.extrac(text.replace('“','').replace('”',''))
|
360 |
+
audio_fin = []
|
361 |
+
c = 0
|
362 |
+
t = datetime.timedelta(seconds=0)
|
363 |
+
f1 = open("subtitles.srt",'w',encoding='utf-8')
|
364 |
+
for sentence in final_list:
|
365 |
+
c +=1
|
366 |
+
stn_tst = self.get_text(self.sle(language,sentence))
|
367 |
+
with torch.no_grad():
|
368 |
+
x_tst = stn_tst.unsqueeze(0).to(self.dev)
|
369 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(self.dev)
|
370 |
+
sid = torch.LongTensor([speaker_id]).to(self.dev)
|
371 |
+
t1 = time.time()
|
372 |
+
audio = self.net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
|
373 |
+
t2 = time.time()
|
374 |
+
spending_time = "第"+str(c)+"句的推理时间为:"+str(t2-t1)+"s"
|
375 |
+
print(spending_time)
|
376 |
+
time_start = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
|
377 |
+
last_time = datetime.timedelta(seconds=len(audio)/float(22050))
|
378 |
+
t+=last_time
|
379 |
+
time_end = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
|
380 |
+
print(time_end)
|
381 |
+
f1.write(str(c-1)+'\n'+time_start+' --> '+time_end+'\n'+sentence+'\n\n')
|
382 |
+
audio_fin.append(audio)
|
383 |
+
file_path = "subtitles.srt"
|
384 |
+
return (self.hps.data.sampling_rate, np.concatenate(audio_fin)),file_path
|
385 |
+
print("开始部署")
|
386 |
+
grVits = VitsGradio()
|
387 |
+
grVits.Vits.launch()
|
attentions.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
import commons
|
7 |
+
from modules import LayerNorm
|
8 |
+
|
9 |
+
|
10 |
+
class Encoder(nn.Module):
|
11 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
|
12 |
+
super().__init__()
|
13 |
+
self.hidden_channels = hidden_channels
|
14 |
+
self.filter_channels = filter_channels
|
15 |
+
self.n_heads = n_heads
|
16 |
+
self.n_layers = n_layers
|
17 |
+
self.kernel_size = kernel_size
|
18 |
+
self.p_dropout = p_dropout
|
19 |
+
self.window_size = window_size
|
20 |
+
|
21 |
+
self.drop = nn.Dropout(p_dropout)
|
22 |
+
self.attn_layers = nn.ModuleList()
|
23 |
+
self.norm_layers_1 = nn.ModuleList()
|
24 |
+
self.ffn_layers = nn.ModuleList()
|
25 |
+
self.norm_layers_2 = nn.ModuleList()
|
26 |
+
for i in range(self.n_layers):
|
27 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
28 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
29 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
30 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
31 |
+
|
32 |
+
def forward(self, x, x_mask):
|
33 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
34 |
+
x = x * x_mask
|
35 |
+
for i in range(self.n_layers):
|
36 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
37 |
+
y = self.drop(y)
|
38 |
+
x = self.norm_layers_1[i](x + y)
|
39 |
+
|
40 |
+
y = self.ffn_layers[i](x, x_mask)
|
41 |
+
y = self.drop(y)
|
42 |
+
x = self.norm_layers_2[i](x + y)
|
43 |
+
x = x * x_mask
|
44 |
+
return x
|
45 |
+
|
46 |
+
|
47 |
+
class Decoder(nn.Module):
|
48 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
|
49 |
+
super().__init__()
|
50 |
+
self.hidden_channels = hidden_channels
|
51 |
+
self.filter_channels = filter_channels
|
52 |
+
self.n_heads = n_heads
|
53 |
+
self.n_layers = n_layers
|
54 |
+
self.kernel_size = kernel_size
|
55 |
+
self.p_dropout = p_dropout
|
56 |
+
self.proximal_bias = proximal_bias
|
57 |
+
self.proximal_init = proximal_init
|
58 |
+
|
59 |
+
self.drop = nn.Dropout(p_dropout)
|
60 |
+
self.self_attn_layers = nn.ModuleList()
|
61 |
+
self.norm_layers_0 = nn.ModuleList()
|
62 |
+
self.encdec_attn_layers = nn.ModuleList()
|
63 |
+
self.norm_layers_1 = nn.ModuleList()
|
64 |
+
self.ffn_layers = nn.ModuleList()
|
65 |
+
self.norm_layers_2 = nn.ModuleList()
|
66 |
+
for i in range(self.n_layers):
|
67 |
+
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
|
68 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
69 |
+
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
70 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
71 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
72 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
73 |
+
|
74 |
+
def forward(self, x, x_mask, h, h_mask):
|
75 |
+
"""
|
76 |
+
x: decoder input
|
77 |
+
h: encoder output
|
78 |
+
"""
|
79 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
80 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
81 |
+
x = x * x_mask
|
82 |
+
for i in range(self.n_layers):
|
83 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
84 |
+
y = self.drop(y)
|
85 |
+
x = self.norm_layers_0[i](x + y)
|
86 |
+
|
87 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
88 |
+
y = self.drop(y)
|
89 |
+
x = self.norm_layers_1[i](x + y)
|
90 |
+
|
91 |
+
y = self.ffn_layers[i](x, x_mask)
|
92 |
+
y = self.drop(y)
|
93 |
+
x = self.norm_layers_2[i](x + y)
|
94 |
+
x = x * x_mask
|
95 |
+
return x
|
96 |
+
|
97 |
+
|
98 |
+
class MultiHeadAttention(nn.Module):
|
99 |
+
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
100 |
+
super().__init__()
|
101 |
+
assert channels % n_heads == 0
|
102 |
+
|
103 |
+
self.channels = channels
|
104 |
+
self.out_channels = out_channels
|
105 |
+
self.n_heads = n_heads
|
106 |
+
self.p_dropout = p_dropout
|
107 |
+
self.window_size = window_size
|
108 |
+
self.heads_share = heads_share
|
109 |
+
self.block_length = block_length
|
110 |
+
self.proximal_bias = proximal_bias
|
111 |
+
self.proximal_init = proximal_init
|
112 |
+
self.attn = None
|
113 |
+
|
114 |
+
self.k_channels = channels // n_heads
|
115 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
116 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
117 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
118 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
119 |
+
self.drop = nn.Dropout(p_dropout)
|
120 |
+
|
121 |
+
if window_size is not None:
|
122 |
+
n_heads_rel = 1 if heads_share else n_heads
|
123 |
+
rel_stddev = self.k_channels**-0.5
|
124 |
+
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
125 |
+
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
126 |
+
|
127 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
128 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
129 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
130 |
+
if proximal_init:
|
131 |
+
with torch.no_grad():
|
132 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
133 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
134 |
+
|
135 |
+
def forward(self, x, c, attn_mask=None):
|
136 |
+
q = self.conv_q(x)
|
137 |
+
k = self.conv_k(c)
|
138 |
+
v = self.conv_v(c)
|
139 |
+
|
140 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
141 |
+
|
142 |
+
x = self.conv_o(x)
|
143 |
+
return x
|
144 |
+
|
145 |
+
def attention(self, query, key, value, mask=None):
|
146 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
147 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
148 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
149 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
150 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
151 |
+
|
152 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
153 |
+
if self.window_size is not None:
|
154 |
+
assert t_s == t_t, "Relative attention is only available for self-attention."
|
155 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
156 |
+
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
|
157 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
158 |
+
scores = scores + scores_local
|
159 |
+
if self.proximal_bias:
|
160 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
161 |
+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
162 |
+
if mask is not None:
|
163 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
164 |
+
if self.block_length is not None:
|
165 |
+
assert t_s == t_t, "Local attention is only available for self-attention."
|
166 |
+
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
167 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
168 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
169 |
+
p_attn = self.drop(p_attn)
|
170 |
+
output = torch.matmul(p_attn, value)
|
171 |
+
if self.window_size is not None:
|
172 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
173 |
+
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
174 |
+
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
175 |
+
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
176 |
+
return output, p_attn
|
177 |
+
|
178 |
+
def _matmul_with_relative_values(self, x, y):
|
179 |
+
"""
|
180 |
+
x: [b, h, l, m]
|
181 |
+
y: [h or 1, m, d]
|
182 |
+
ret: [b, h, l, d]
|
183 |
+
"""
|
184 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
185 |
+
return ret
|
186 |
+
|
187 |
+
def _matmul_with_relative_keys(self, x, y):
|
188 |
+
"""
|
189 |
+
x: [b, h, l, d]
|
190 |
+
y: [h or 1, m, d]
|
191 |
+
ret: [b, h, l, m]
|
192 |
+
"""
|
193 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
194 |
+
return ret
|
195 |
+
|
196 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
197 |
+
max_relative_position = 2 * self.window_size + 1
|
198 |
+
# Pad first before slice to avoid using cond ops.
|
199 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
200 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
201 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
202 |
+
if pad_length > 0:
|
203 |
+
padded_relative_embeddings = F.pad(
|
204 |
+
relative_embeddings,
|
205 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
206 |
+
else:
|
207 |
+
padded_relative_embeddings = relative_embeddings
|
208 |
+
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
|
209 |
+
return used_relative_embeddings
|
210 |
+
|
211 |
+
def _relative_position_to_absolute_position(self, x):
|
212 |
+
"""
|
213 |
+
x: [b, h, l, 2*l-1]
|
214 |
+
ret: [b, h, l, l]
|
215 |
+
"""
|
216 |
+
batch, heads, length, _ = x.size()
|
217 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
218 |
+
x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
219 |
+
|
220 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
221 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
222 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
223 |
+
|
224 |
+
# Reshape and slice out the padded elements.
|
225 |
+
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
226 |
+
return x_final
|
227 |
+
|
228 |
+
def _absolute_position_to_relative_position(self, x):
|
229 |
+
"""
|
230 |
+
x: [b, h, l, l]
|
231 |
+
ret: [b, h, l, 2*l-1]
|
232 |
+
"""
|
233 |
+
batch, heads, length, _ = x.size()
|
234 |
+
# padd along column
|
235 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
236 |
+
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
|
237 |
+
# add 0's in the beginning that will skew the elements after reshape
|
238 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
239 |
+
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
240 |
+
return x_final
|
241 |
+
|
242 |
+
def _attention_bias_proximal(self, length):
|
243 |
+
"""Bias for self-attention to encourage attention to close positions.
|
244 |
+
Args:
|
245 |
+
length: an integer scalar.
|
246 |
+
Returns:
|
247 |
+
a Tensor with shape [1, 1, length, length]
|
248 |
+
"""
|
249 |
+
r = torch.arange(length, dtype=torch.float32)
|
250 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
251 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
252 |
+
|
253 |
+
|
254 |
+
class FFN(nn.Module):
|
255 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
256 |
+
super().__init__()
|
257 |
+
self.in_channels = in_channels
|
258 |
+
self.out_channels = out_channels
|
259 |
+
self.filter_channels = filter_channels
|
260 |
+
self.kernel_size = kernel_size
|
261 |
+
self.p_dropout = p_dropout
|
262 |
+
self.activation = activation
|
263 |
+
self.causal = causal
|
264 |
+
|
265 |
+
if causal:
|
266 |
+
self.padding = self._causal_padding
|
267 |
+
else:
|
268 |
+
self.padding = self._same_padding
|
269 |
+
|
270 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
271 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
272 |
+
self.drop = nn.Dropout(p_dropout)
|
273 |
+
|
274 |
+
def forward(self, x, x_mask):
|
275 |
+
x = self.conv_1(self.padding(x * x_mask))
|
276 |
+
if self.activation == "gelu":
|
277 |
+
x = x * torch.sigmoid(1.702 * x)
|
278 |
+
else:
|
279 |
+
x = torch.relu(x)
|
280 |
+
x = self.drop(x)
|
281 |
+
x = self.conv_2(self.padding(x * x_mask))
|
282 |
+
return x * x_mask
|
283 |
+
|
284 |
+
def _causal_padding(self, x):
|
285 |
+
if self.kernel_size == 1:
|
286 |
+
return x
|
287 |
+
pad_l = self.kernel_size - 1
|
288 |
+
pad_r = 0
|
289 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
290 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
291 |
+
return x
|
292 |
+
|
293 |
+
def _same_padding(self, x):
|
294 |
+
if self.kernel_size == 1:
|
295 |
+
return x
|
296 |
+
pad_l = (self.kernel_size - 1) // 2
|
297 |
+
pad_r = self.kernel_size // 2
|
298 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
299 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
300 |
+
return x
|
checkpoints/ShojoKageki/config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 1000,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 2e-4,
|
8 |
+
"betas": [0.8, 0.99],
|
9 |
+
"eps": 1e-9,
|
10 |
+
"batch_size": 32,
|
11 |
+
"fp16_run": true,
|
12 |
+
"lr_decay": 0.999875,
|
13 |
+
"segment_size": 8192,
|
14 |
+
"init_lr_ratio": 1,
|
15 |
+
"warmup_epochs": 0,
|
16 |
+
"c_mel": 45,
|
17 |
+
"c_kl": 1.0
|
18 |
+
},
|
19 |
+
"data": {
|
20 |
+
"training_files":"/www/training/dataset/train_with_paimeng2.txt",
|
21 |
+
"validation_files":"/www/training/dataset/val_filelist.txt",
|
22 |
+
"text_cleaners":["cjke_cleaners"],
|
23 |
+
"max_wav_value": 32768.0,
|
24 |
+
"sampling_rate": 22050,
|
25 |
+
"filter_length": 1024,
|
26 |
+
"hop_length": 256,
|
27 |
+
"win_length": 1024,
|
28 |
+
"n_mel_channels": 80,
|
29 |
+
"mel_fmin": 0.0,
|
30 |
+
"mel_fmax": null,
|
31 |
+
"add_blank": true,
|
32 |
+
"n_speakers": 50,
|
33 |
+
"cleaned_text": true
|
34 |
+
},
|
35 |
+
"model": {
|
36 |
+
"inter_channels": 192,
|
37 |
+
"hidden_channels": 192,
|
38 |
+
"filter_channels": 768,
|
39 |
+
"n_heads": 2,
|
40 |
+
"n_layers": 6,
|
41 |
+
"kernel_size": 3,
|
42 |
+
"p_dropout": 0.1,
|
43 |
+
"resblock": "1",
|
44 |
+
"resblock_kernel_sizes": [3,7,11],
|
45 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
46 |
+
"upsample_rates": [8,8,2,2],
|
47 |
+
"upsample_initial_channel": 512,
|
48 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
49 |
+
"n_layers_q": 3,
|
50 |
+
"use_spectral_norm": false,
|
51 |
+
"gin_channels": 256
|
52 |
+
},
|
53 |
+
"symbols": ["_", ",", ".", "!", "?", "-", "~", "\u2026", "A", "E", "I", "N", "O", "Q", "U", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "r", "s", "t", "u", "v", "w", "y", "z", "\u0283", "\u02a7", "\u02a6", "\u026f", "\u0279", "\u0259", "\u0265", "\u207c", "\u02b0", "`", "\u2192", "\u2193", "\u2191", " "]
|
54 |
+
}
|
checkpoints/ShojoKageki/model-0ld.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aacf2ab87f213ef06fde55066569c1b947761c5bab8e2f389db330097fb4b425
|
3 |
+
size 476964251
|
checkpoints/ShojoKageki/model-1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60939942eb23ba8b12583ffb3402da8ef5442740efeef4b05a315b068ad87451
|
3 |
+
size 476964251
|
checkpoints/ShojoKageki/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9feb190c113f26d1a273c7fd5047beedacc064528668c3d1715da163c63efef
|
3 |
+
size 476964251
|
checkpoints/biaobei/config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 1000,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 2e-4,
|
8 |
+
"betas": [0.8, 0.99],
|
9 |
+
"eps": 1e-9,
|
10 |
+
"batch_size": 32,
|
11 |
+
"fp16_run": true,
|
12 |
+
"lr_decay": 0.999875,
|
13 |
+
"segment_size": 8192,
|
14 |
+
"init_lr_ratio": 1,
|
15 |
+
"warmup_epochs": 0,
|
16 |
+
"c_mel": 45,
|
17 |
+
"c_kl": 1.0
|
18 |
+
},
|
19 |
+
"data": {
|
20 |
+
"training_files":"/www/training/dataset/train_with_paimeng2.txt",
|
21 |
+
"validation_files":"/www/training/dataset/val_filelist.txt",
|
22 |
+
"text_cleaners":["cjke_cleaners"],
|
23 |
+
"max_wav_value": 32768.0,
|
24 |
+
"sampling_rate": 22050,
|
25 |
+
"filter_length": 1024,
|
26 |
+
"hop_length": 256,
|
27 |
+
"win_length": 1024,
|
28 |
+
"n_mel_channels": 80,
|
29 |
+
"mel_fmin": 0.0,
|
30 |
+
"mel_fmax": null,
|
31 |
+
"add_blank": true,
|
32 |
+
"n_speakers": 50,
|
33 |
+
"cleaned_text": true
|
34 |
+
},
|
35 |
+
"model": {
|
36 |
+
"inter_channels": 192,
|
37 |
+
"hidden_channels": 192,
|
38 |
+
"filter_channels": 768,
|
39 |
+
"n_heads": 2,
|
40 |
+
"n_layers": 6,
|
41 |
+
"kernel_size": 3,
|
42 |
+
"p_dropout": 0.1,
|
43 |
+
"resblock": "1",
|
44 |
+
"resblock_kernel_sizes": [3,7,11],
|
45 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
46 |
+
"upsample_rates": [8,8,2,2],
|
47 |
+
"upsample_initial_channel": 512,
|
48 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
49 |
+
"n_layers_q": 3,
|
50 |
+
"use_spectral_norm": false,
|
51 |
+
"gin_channels": 256
|
52 |
+
},
|
53 |
+
"symbols": ["_", ",", ".", "!", "?", "-", "~", "\u2026", "N", "Q", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "s", "t", "u", "v", "w", "x", "y", "z", "\u0251", "\u00e6", "\u0283", "\u0291", "\u00e7", "\u026f", "\u026a", "\u0254", "\u025b", "\u0279", "\u00f0", "\u0259", "\u026b", "\u0265", "\u0278", "\u028a", "\u027e", "\u0292", "\u03b8", "\u03b2", "\u014b", "\u0266", "\u207c", "\u02b0", "`", "^", "#", "*", "=", "\u02c8", "\u02cc", "\u2192", "\u2193", "\u2191", " "]
|
54 |
+
}
|
checkpoints/biaobei/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:715cb3e0c35b288b465c24040817b0b75379b16f3e9ad9a191a5dbcd7c2143b2
|
3 |
+
size 476967685
|
checkpoints/default/config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 1000,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 2e-4,
|
8 |
+
"betas": [0.8, 0.99],
|
9 |
+
"eps": 1e-9,
|
10 |
+
"batch_size": 32,
|
11 |
+
"fp16_run": true,
|
12 |
+
"lr_decay": 0.999875,
|
13 |
+
"segment_size": 8192,
|
14 |
+
"init_lr_ratio": 1,
|
15 |
+
"warmup_epochs": 0,
|
16 |
+
"c_mel": 45,
|
17 |
+
"c_kl": 1.0
|
18 |
+
},
|
19 |
+
"data": {
|
20 |
+
"training_files":"/www/training/dataset/train_with_paimeng2.txt",
|
21 |
+
"validation_files":"/www/training/dataset/val_filelist.txt",
|
22 |
+
"text_cleaners":["cjke_cleaners"],
|
23 |
+
"max_wav_value": 32768.0,
|
24 |
+
"sampling_rate": 22050,
|
25 |
+
"filter_length": 1024,
|
26 |
+
"hop_length": 256,
|
27 |
+
"win_length": 1024,
|
28 |
+
"n_mel_channels": 80,
|
29 |
+
"mel_fmin": 0.0,
|
30 |
+
"mel_fmax": null,
|
31 |
+
"add_blank": true,
|
32 |
+
"n_speakers": 50,
|
33 |
+
"cleaned_text": true
|
34 |
+
},
|
35 |
+
"model": {
|
36 |
+
"inter_channels": 192,
|
37 |
+
"hidden_channels": 192,
|
38 |
+
"filter_channels": 768,
|
39 |
+
"n_heads": 2,
|
40 |
+
"n_layers": 6,
|
41 |
+
"kernel_size": 3,
|
42 |
+
"p_dropout": 0.1,
|
43 |
+
"resblock": "1",
|
44 |
+
"resblock_kernel_sizes": [3,7,11],
|
45 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
46 |
+
"upsample_rates": [8,8,2,2],
|
47 |
+
"upsample_initial_channel": 512,
|
48 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
49 |
+
"n_layers_q": 3,
|
50 |
+
"use_spectral_norm": false,
|
51 |
+
"gin_channels": 256
|
52 |
+
},
|
53 |
+
"symbols": ["_", ",", ".", "!", "?", "-", "~", "\u2026", "N", "Q", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "s", "t", "u", "v", "w", "x", "y", "z", "\u0251", "\u00e6", "\u0283", "\u0291", "\u00e7", "\u026f", "\u026a", "\u0254", "\u025b", "\u0279", "\u00f0", "\u0259", "\u026b", "\u0265", "\u0278", "\u028a", "\u027e", "\u0292", "\u03b8", "\u03b2", "\u014b", "\u0266", "\u207c", "\u02b0", "`", "^", "#", "*", "=", "\u02c8", "\u02cc", "\u2192", "\u2193", "\u2191", " "]
|
54 |
+
}
|
checkpoints/default/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9114848f7b7f854a030064600a4703ee7d22f76bdf6a12b2335874faf4f93c52
|
3 |
+
size 476964251
|
checkpoints/info.json
ADDED
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"Seisho-Nijigasaki":{
|
3 |
+
"speakers":{
|
4 |
+
"華恋":{
|
5 |
+
"sid": 21,
|
6 |
+
"speech": "私たちはもう舞台の上。",
|
7 |
+
"name": "華恋"
|
8 |
+
},
|
9 |
+
"まひる":{
|
10 |
+
"sid": 22,
|
11 |
+
"speech": "夢咲く舞台に、輝け、私!",
|
12 |
+
"name": "まひる"
|
13 |
+
},
|
14 |
+
"なな":{
|
15 |
+
"sid": 23,
|
16 |
+
"speech": "燃える宝石のようなキラめき、やっと届いた。ありがとう、純那ちゃん。",
|
17 |
+
"name": "なな"
|
18 |
+
},
|
19 |
+
"クロディーヌ":{
|
20 |
+
"sid": 24,
|
21 |
+
"speech": "ライバルのレヴューは終わらない、永遠に。",
|
22 |
+
"name": "クロディーヌ"
|
23 |
+
},
|
24 |
+
"ひかり":{
|
25 |
+
"sid": 25,
|
26 |
+
"speech": "じゃあ、探しに行きなさいよ。次の舞台、次の役を。",
|
27 |
+
"name": "ひかり"
|
28 |
+
},
|
29 |
+
"純那":{
|
30 |
+
"sid": 26,
|
31 |
+
"speech": "でもいつか、いつかまた新しい舞台で、一緒に。",
|
32 |
+
"name": "純那"
|
33 |
+
},
|
34 |
+
"香子":{
|
35 |
+
"sid": 27,
|
36 |
+
"speech": "ガキのわがままには勝てんわ。",
|
37 |
+
"name": "香子"
|
38 |
+
},
|
39 |
+
"真矢":{
|
40 |
+
"sid": 28,
|
41 |
+
"speech": "私たちは、燃えながら、ともに落ちていく炎。",
|
42 |
+
"name": "真矢"
|
43 |
+
},
|
44 |
+
"双葉":{
|
45 |
+
"sid": 29,
|
46 |
+
"speech": "ほんと、しょうもないな、あたしたち。",
|
47 |
+
"name": "双葉"
|
48 |
+
},
|
49 |
+
"珠緒":{
|
50 |
+
"sid": 37,
|
51 |
+
"speech": "お持ちなさい あなたの望んだその星を。",
|
52 |
+
"name": "珠緒"
|
53 |
+
},
|
54 |
+
"塁":{
|
55 |
+
"sid": 36,
|
56 |
+
"speech": "凛明館女学校演劇科,秋風塁。命の在処 この舞台に見つけたり。",
|
57 |
+
"name": "塁"
|
58 |
+
},
|
59 |
+
"ゆゆ子":{
|
60 |
+
"sid": 35,
|
61 |
+
"speech": "凛明館女学校演劇科 田中ゆゆ子!命かけたる正念場 いざご覧あれ!",
|
62 |
+
"name": "ゆゆ子"
|
63 |
+
},
|
64 |
+
"いちえ":{
|
65 |
+
"sid": 34,
|
66 |
+
"speech": "凛明館女学校演劇科,音無いちえ。聞かせて魅せます,命の響!",
|
67 |
+
"name": "いちえ"
|
68 |
+
},
|
69 |
+
"あるる":{
|
70 |
+
"sid": 38,
|
71 |
+
"speech": "舞台少女,大月あるる。いどめ向かい風 すすめフロンティア!",
|
72 |
+
"name": "あるる"
|
73 |
+
},
|
74 |
+
"ララフィン":{
|
75 |
+
"sid": 39,
|
76 |
+
"speech": "舞台少女,野々宮ララフィン。愛と勇気で すすめフロンティア。",
|
77 |
+
"name": "ララフィン"
|
78 |
+
},
|
79 |
+
"美空":{
|
80 |
+
"sid": 40,
|
81 |
+
"speech": "私の舞台は,この胸、この奥。",
|
82 |
+
"name": "美空"
|
83 |
+
},
|
84 |
+
"静羽":{
|
85 |
+
"sid": 41,
|
86 |
+
"speech": "舞台少女,胡蝶静羽。あの空目指して すすめフロンティア。",
|
87 |
+
"name": "静羽"
|
88 |
+
},
|
89 |
+
"ミチル":{
|
90 |
+
"sid": 30,
|
91 |
+
"speech": "わが宿命は、王と共に。",
|
92 |
+
"name": "ミチル"
|
93 |
+
},
|
94 |
+
"メイファン":{
|
95 |
+
"sid": 31,
|
96 |
+
"speech": "重力转动九十九万匹力量,海虎爆破拳!",
|
97 |
+
"name": "メイファン"
|
98 |
+
},
|
99 |
+
"やちよ":{
|
100 |
+
"sid": 32,
|
101 |
+
"speech": "この世は舞台王すらも役者——ですよ?",
|
102 |
+
"name": "やちよ"
|
103 |
+
},
|
104 |
+
"晶":{
|
105 |
+
"sid": 33,
|
106 |
+
"speech": "アタシ――再契約,神無き舞台に王者の光を。",
|
107 |
+
"name": "晶"
|
108 |
+
},
|
109 |
+
"歩夢":{
|
110 |
+
"sid": 1,
|
111 |
+
"speech": "みなさん、はじめまして。上原歩夢です。",
|
112 |
+
"name": "歩夢"
|
113 |
+
},
|
114 |
+
"かすみ":{
|
115 |
+
"sid": 2,
|
116 |
+
"speech": "みんなのアイドルかすみんだよー。",
|
117 |
+
"name": "かすみ"
|
118 |
+
},
|
119 |
+
"しずく":{
|
120 |
+
"sid": 3,
|
121 |
+
"speech": "みなさん、こんにちは。しずくです。",
|
122 |
+
"name": "しずく"
|
123 |
+
},
|
124 |
+
"果林":{
|
125 |
+
"sid": 4,
|
126 |
+
"speech": "ハーイ。 朝香果林よ。よろしくね",
|
127 |
+
"name": "果林"
|
128 |
+
},
|
129 |
+
"愛":{
|
130 |
+
"sid": 5,
|
131 |
+
"speech": "ちっすー。アタシは愛。",
|
132 |
+
"name": "愛"
|
133 |
+
},
|
134 |
+
"せつ菜":{
|
135 |
+
"sid": 7,
|
136 |
+
"speech": "絶えぬ命は,常世に在らず。終わらぬ芝居も,夢幻のごとく。儚く燃えゆく,さだめであれば。舞台に刻まん,刹那の瞬き。",
|
137 |
+
"name": "せつ菜"
|
138 |
+
},
|
139 |
+
"エマ":{
|
140 |
+
"sid": 8,
|
141 |
+
"speech": "こんにちは、エマです。自然溢れるスイスからやってきましたっ。",
|
142 |
+
"name": "エマ"
|
143 |
+
},
|
144 |
+
"璃奈":{
|
145 |
+
"sid": 9,
|
146 |
+
"speech": "私、天王寺璃奈。とってもきゅーとな女の子。ホントだよ?",
|
147 |
+
"name": "璃奈"
|
148 |
+
},
|
149 |
+
"栞子":{
|
150 |
+
"sid": 10,
|
151 |
+
"speech": "みなさん、初めまして。三船栞子と申します。",
|
152 |
+
"name": "栞子"
|
153 |
+
},
|
154 |
+
"ランジュ":{
|
155 |
+
"sid": 11,
|
156 |
+
"speech": "你好啊,我是钟岚珠。",
|
157 |
+
"name": "ランジュ"
|
158 |
+
},
|
159 |
+
"ミア":{
|
160 |
+
"sid": 12,
|
161 |
+
"speech": "ボクはミア・テイラー。",
|
162 |
+
"name": "ミア"
|
163 |
+
},
|
164 |
+
"高咲侑":{
|
165 |
+
"sid": 0,
|
166 |
+
"speech": "只选一个做不到啊",
|
167 |
+
"name": "高咲侑"
|
168 |
+
}
|
169 |
+
},
|
170 |
+
"checkpoint": "checkpoints/tmp/model.pth"
|
171 |
+
|
172 |
+
},
|
173 |
+
"Seisho-betterchinese":{
|
174 |
+
"speakers":{
|
175 |
+
"華恋":{
|
176 |
+
"sid": 21,
|
177 |
+
"speech": "何为农业世界,毕竟人是铁饭是钢,吃这东西一直都是刚需。而农业世界专职从事于生产,也就成为了帝国字面意思上的粮仓。",
|
178 |
+
"name": "華恋"
|
179 |
+
},
|
180 |
+
"まひる":{
|
181 |
+
"sid": 22,
|
182 |
+
"speech": "倘若没有农业世界那持续的产出,可能周围的星系乃至整个次星区都有可能陷入饥荒和饿肚子。",
|
183 |
+
"name": "まひる"
|
184 |
+
},
|
185 |
+
"なな":{
|
186 |
+
"sid": 23,
|
187 |
+
"speech": "虽说许多文明世界和巢都世界都有着一定自给自足的能力,比如瓦尔哈拉的众多居民必须在黑暗的洞穴中劳作来培育维持民众生活的营养泥 ;涅克蒙洛达上的尸体行会也会不断回收死者并将其回收制成尸体淀粉以喂饱更多的生者。",
|
188 |
+
"name": "なな"
|
189 |
+
},
|
190 |
+
"クロディーヌ":{
|
191 |
+
"sid": 24,
|
192 |
+
"speech": "而德索莱姆的巢都中也会进口大量来自其他世界海洋中的有机物,并被制成浓稠、富含蛋白质的稀粥,随后被用来喂养伊洛克胆蝇幼虫,接着这些幼虫会在合适的时机被打浆、压缩并成型为臭名昭著的油腻且普遍厌恶的口粮棒,这些口粮棒也被用来喂饱规模庞大的工厂工人和士兵。",
|
193 |
+
"name": "クロディーヌ"
|
194 |
+
},
|
195 |
+
"ひかり":{
|
196 |
+
"sid": 25,
|
197 |
+
"speech": "但作为帝国人力资源的最大提供者,并为帝国生产提供了大量工业产品和什一税的巢都世界,在失去外部资源的供给时无疑也是毁灭性的打击,被隔离的阿戈斯已经生动的为各个巢都世界上了一节名为“隔绝灭亡”的课了。",
|
198 |
+
"name": "ひかり"
|
199 |
+
},
|
200 |
+
"純那":{
|
201 |
+
"sid": 26,
|
202 |
+
"speech": "而这些补给资源的来源很大一部分则是来自于农业世界。",
|
203 |
+
"name": "純那"
|
204 |
+
},
|
205 |
+
"香子":{
|
206 |
+
"sid": 27,
|
207 |
+
"speech": "农业世界完全致力于农业产品的生产,并将这些产出用于喂饱巢都世界和铸造世界上嗷嗷待哺的饥饿人口,当然了,还有的便是为那星界军的庞大部队提供食粮。",
|
208 |
+
"name": "香子"
|
209 |
+
},
|
210 |
+
"真矢":{
|
211 |
+
"sid": 28,
|
212 |
+
"speech": "农业世界有时甚至会直接被内政部管理而不是当地行星政府,这一切都只是为了确保这些农业世界能以最大效率种植和收获作物。",
|
213 |
+
"name": "真矢"
|
214 |
+
},
|
215 |
+
"双葉":{
|
216 |
+
"sid": 29,
|
217 |
+
"speech": "作为农业世界,整个世界上的大部分区域都被用于种植、水培、动物饲料或畜牧业生产。其中许多行星已经完全变成了巨型农场,其中大多数人口不足1亿,并在星球上仅有数个主要城市。",
|
218 |
+
"name": "双葉"
|
219 |
+
},
|
220 |
+
"珠緒":{
|
221 |
+
"sid": 37,
|
222 |
+
"speech": "以农业世界纳扬为例,这个世界上种植这7种富含营养的作物,这里的超级农业工厂种共有超过300万名机仆,但只有20万人在这��控制着半自动车辆并监督者气象网络控制节点。",
|
223 |
+
"name": "珠緒"
|
224 |
+
},
|
225 |
+
"塁":{
|
226 |
+
"sid": 36,
|
227 |
+
"speech": "这里的军事人员和其他机构也并不多,可以说在许多混沌战帮的眼中不亚于一个唾手可得的战利品。",
|
228 |
+
"name": "塁"
|
229 |
+
},
|
230 |
+
"ゆゆ子":{
|
231 |
+
"sid": 35,
|
232 |
+
"speech": "农业世界的组成部分也相当不同,内政部也会根据当地环境、气候或是特殊情况而创造出不同的农业世界。",
|
233 |
+
"name": "ゆゆ子"
|
234 |
+
},
|
235 |
+
"いちえ":{
|
236 |
+
"sid": 34,
|
237 |
+
"speech": "比如世界上可能是受人监管的水培湖;悬浮在空心行星上的漂浮田野;或是深埋在辐射山脉中的藻类大桶。",
|
238 |
+
"name": "いちえ"
|
239 |
+
},
|
240 |
+
"あるる":{
|
241 |
+
"sid": 38,
|
242 |
+
"speech": "但无论如何,这些农业世界都致力于一个目标:喂饱帝国的亿万人口。有时即使是最轻微的作物歉收或牲畜瘟疫,都可能会让其他世界陷入可怕的饥荒,或使帝国的战线崩溃,因此在帝国日常的运行中,农业世界虽不起眼但至关重要。",
|
243 |
+
"name": "あるる"
|
244 |
+
},
|
245 |
+
"ララフィン":{
|
246 |
+
"sid": 39,
|
247 |
+
"speech": "毕竟只有依靠农业世界的产出,帝国的战争机器才能良好运转。",
|
248 |
+
"name": "ララフィン"
|
249 |
+
},
|
250 |
+
"美空":{
|
251 |
+
"sid": 40,
|
252 |
+
"speech": "得益于产出的食物,工厂里的工人才不会饿着肚子制造战争引擎,战线上士兵饥饿的肚子才能被填饱。",
|
253 |
+
"name": "美空"
|
254 |
+
},
|
255 |
+
"静羽":{
|
256 |
+
"sid": 41,
|
257 |
+
"speech": "对于一些独立于帝国之外的叛乱势力而言农业世界也是相当重要的。",
|
258 |
+
"name": "静羽"
|
259 |
+
},
|
260 |
+
"ミチル":{
|
261 |
+
"sid": 30,
|
262 |
+
"speech": "比如让卡里西斯星区相当苦恼的赛弗鲁公爵领来说,农业世界富特希登便至关重要,因为这里提供了赛弗鲁公爵领的大部分食物供应,这群分离主义势力的绝大多数战略储备均来自这个星球上的什一税。",
|
263 |
+
"name": "ミチル"
|
264 |
+
},
|
265 |
+
"メイファン":{
|
266 |
+
"sid": 31,
|
267 |
+
"speech": "当然如果赛弗鲁公爵领失去了对这个世界的控制权,那么整个脱离于帝国之外的独立国度将会在几个星期内土崩瓦解。",
|
268 |
+
"name": "メイファン"
|
269 |
+
},
|
270 |
+
"やちよ":{
|
271 |
+
"sid": 32,
|
272 |
+
"speech": "一些农业世界会专注于种植一些主食作物,因为这些食物相对简单,易于种植、储存,并加工成各种形式,供人类在银河系消费。",
|
273 |
+
"name": "やちよ"
|
274 |
+
},
|
275 |
+
"晶":{
|
276 |
+
"sid": 33,
|
277 |
+
"speech": "他妈的,怎么到处都是锤佬。",
|
278 |
+
"name": "晶"
|
279 |
+
},
|
280 |
+
"梁芷柔":{
|
281 |
+
"sid": 18,
|
282 |
+
"speech": "而画风正常一点的农业世界也有,在奥特拉玛,农业世界新星弗利恩便是为马库拉格星系的其他地区提供食物的主要来源。",
|
283 |
+
"name": "梁芷柔"
|
284 |
+
},
|
285 |
+
"墨小菊":{
|
286 |
+
"sid": 0,
|
287 |
+
"speech": "虽然这里盛产粮食,但这里营养不良依然是折磨当地居民的问题之一,同时因工作原因也让当地人饱受地方性肺病的折磨。",
|
288 |
+
"name": "墨小菊"
|
289 |
+
}
|
290 |
+
},
|
291 |
+
"checkpoint": "checkpoints/ShojoKageki/model.pth"
|
292 |
+
},
|
293 |
+
"Nijigasaki":{
|
294 |
+
"speakers":{
|
295 |
+
"歩夢":{
|
296 |
+
"sid": 1,
|
297 |
+
"speech": "みなさん、はじめまして。上原歩夢です。",
|
298 |
+
"name": "歩夢"
|
299 |
+
},
|
300 |
+
"かすみ":{
|
301 |
+
"sid": 2,
|
302 |
+
"speech": "みんなのアイドルかすみんだよー。",
|
303 |
+
"name": "かすみ"
|
304 |
+
},
|
305 |
+
"しずく":{
|
306 |
+
"sid": 3,
|
307 |
+
"speech": "みなさん、こんにちは。しずくです。",
|
308 |
+
"name": "しずく"
|
309 |
+
},
|
310 |
+
"果林":{
|
311 |
+
"sid": 4,
|
312 |
+
"speech": "ハーイ。 朝香果林よ。よろしくね",
|
313 |
+
"name": "果林"
|
314 |
+
},
|
315 |
+
"愛":{
|
316 |
+
"sid": 5,
|
317 |
+
"speech": "ちっすー。アタシは愛。",
|
318 |
+
"name": "愛"
|
319 |
+
},
|
320 |
+
"せつ菜":{
|
321 |
+
"sid": 7,
|
322 |
+
"speech": "絶えぬ命は,常世に在らず。終わらぬ芝居も,夢幻のごとく。儚く燃えゆく,さだめであれば。舞台に刻まん,刹那の瞬き。",
|
323 |
+
"name": "せつ菜"
|
324 |
+
},
|
325 |
+
"エマ":{
|
326 |
+
"sid": 8,
|
327 |
+
"speech": "こんにちは、エマです。自然溢れるスイスからやってきましたっ。",
|
328 |
+
"name": "エマ"
|
329 |
+
},
|
330 |
+
"璃奈":{
|
331 |
+
"sid": 9,
|
332 |
+
"speech": "私、天王寺璃奈。とってもきゅーとな女の子。ホントだよ?",
|
333 |
+
"name": "璃奈"
|
334 |
+
},
|
335 |
+
"栞子":{
|
336 |
+
"sid": 10,
|
337 |
+
"speech": "みなさん、初めまして。三船栞子と申します。",
|
338 |
+
"name": "栞子"
|
339 |
+
},
|
340 |
+
"ランジュ":{
|
341 |
+
"sid": 11,
|
342 |
+
"speech": "你好啊,我是钟岚珠。",
|
343 |
+
"name": "ランジュ"
|
344 |
+
},
|
345 |
+
"ミア":{
|
346 |
+
"sid": 12,
|
347 |
+
"speech": "ボクはミア・テイラー。",
|
348 |
+
"name": "ミア"
|
349 |
+
},
|
350 |
+
"高咲侑":{
|
351 |
+
"sid": 0,
|
352 |
+
"speech": "只选一个做不到啊",
|
353 |
+
"name": "高咲侑"
|
354 |
+
}
|
355 |
+
},
|
356 |
+
"checkpoint": "checkpoints/paimeng/model.pth"
|
357 |
+
},
|
358 |
+
"Nijigasaki-biaobei":{
|
359 |
+
"speakers":{
|
360 |
+
"歩夢":{
|
361 |
+
"sid": 1,
|
362 |
+
"speech": "みなさん、はじめまして。上原歩夢です。",
|
363 |
+
"name": "歩夢"
|
364 |
+
},
|
365 |
+
"かすみ":{
|
366 |
+
"sid": 2,
|
367 |
+
"speech": "みんなのアイドルかすみんだよー。",
|
368 |
+
"name": "かすみ"
|
369 |
+
},
|
370 |
+
"しずく":{
|
371 |
+
"sid": 3,
|
372 |
+
"speech": "みなさん、こんにちは。しずくです。",
|
373 |
+
"name": "しずく"
|
374 |
+
},
|
375 |
+
"果林":{
|
376 |
+
"sid": 4,
|
377 |
+
"speech": "ハーイ。 朝香果林よ。よろしくね",
|
378 |
+
"name": "果林"
|
379 |
+
},
|
380 |
+
"愛":{
|
381 |
+
"sid": 5,
|
382 |
+
"speech": "ちっすー。アタシは愛。",
|
383 |
+
"name": "愛"
|
384 |
+
},
|
385 |
+
"せつ菜":{
|
386 |
+
"sid": 7,
|
387 |
+
"speech": "絶えぬ命は,常世に在らず。終わらぬ芝居も,夢幻のごとく。儚く燃えゆく,さだめであれば。舞台に刻まん,刹那の瞬き。",
|
388 |
+
"name": "せつ菜"
|
389 |
+
},
|
390 |
+
"エマ":{
|
391 |
+
"sid": 8,
|
392 |
+
"speech": "こんにちは、エマです。自然溢れるスイスからやってきましたっ。",
|
393 |
+
"name": "エマ"
|
394 |
+
},
|
395 |
+
"璃奈":{
|
396 |
+
"sid": 9,
|
397 |
+
"speech": "私、天王寺璃奈。とってもきゅーとな女の子。ホントだよ?",
|
398 |
+
"name": "璃奈"
|
399 |
+
},
|
400 |
+
"栞子":{
|
401 |
+
"sid": 10,
|
402 |
+
"speech": "みなさん、初めまして。三船栞子と申します。",
|
403 |
+
"name": "栞子"
|
404 |
+
},
|
405 |
+
"ランジュ":{
|
406 |
+
"sid": 11,
|
407 |
+
"speech": "你好啊,我是钟岚珠。",
|
408 |
+
"name": "ランジュ"
|
409 |
+
},
|
410 |
+
"ミア":{
|
411 |
+
"sid": 12,
|
412 |
+
"speech": "ボクはミア・テイラー。",
|
413 |
+
"name": "ミア"
|
414 |
+
},
|
415 |
+
"高咲侑":{
|
416 |
+
"sid": 0,
|
417 |
+
"speech": "只选一个做不到啊",
|
418 |
+
"name": "高咲侑"
|
419 |
+
}
|
420 |
+
},
|
421 |
+
"checkpoint": "checkpoints/biaobei/model.pth"
|
422 |
+
}
|
423 |
+
|
424 |
+
}
|
checkpoints/paimeng/config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 1000,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 2e-4,
|
8 |
+
"betas": [0.8, 0.99],
|
9 |
+
"eps": 1e-9,
|
10 |
+
"batch_size": 32,
|
11 |
+
"fp16_run": true,
|
12 |
+
"lr_decay": 0.999875,
|
13 |
+
"segment_size": 8192,
|
14 |
+
"init_lr_ratio": 1,
|
15 |
+
"warmup_epochs": 0,
|
16 |
+
"c_mel": 45,
|
17 |
+
"c_kl": 1.0
|
18 |
+
},
|
19 |
+
"data": {
|
20 |
+
"training_files":"/www/training/dataset/train_with_paimeng2.txt",
|
21 |
+
"validation_files":"/www/training/dataset/val_filelist.txt",
|
22 |
+
"text_cleaners":["cjke_cleaners"],
|
23 |
+
"max_wav_value": 32768.0,
|
24 |
+
"sampling_rate": 22050,
|
25 |
+
"filter_length": 1024,
|
26 |
+
"hop_length": 256,
|
27 |
+
"win_length": 1024,
|
28 |
+
"n_mel_channels": 80,
|
29 |
+
"mel_fmin": 0.0,
|
30 |
+
"mel_fmax": null,
|
31 |
+
"add_blank": true,
|
32 |
+
"n_speakers": 50,
|
33 |
+
"cleaned_text": true
|
34 |
+
},
|
35 |
+
"model": {
|
36 |
+
"inter_channels": 192,
|
37 |
+
"hidden_channels": 192,
|
38 |
+
"filter_channels": 768,
|
39 |
+
"n_heads": 2,
|
40 |
+
"n_layers": 6,
|
41 |
+
"kernel_size": 3,
|
42 |
+
"p_dropout": 0.1,
|
43 |
+
"resblock": "1",
|
44 |
+
"resblock_kernel_sizes": [3,7,11],
|
45 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
46 |
+
"upsample_rates": [8,8,2,2],
|
47 |
+
"upsample_initial_channel": 512,
|
48 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
49 |
+
"n_layers_q": 3,
|
50 |
+
"use_spectral_norm": false,
|
51 |
+
"gin_channels": 256
|
52 |
+
},
|
53 |
+
"symbols": ["_", ",", ".", "!", "?", "-", "~", "\u2026", "A", "E", "I", "N", "O", "Q", "U", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "r", "s", "t", "u", "v", "w", "y", "z", "\u0283", "\u02a7", "\u02a6", "\u026f", "\u0279", "\u0259", "\u0265", "\u207c", "\u02b0", "`", "\u2192", "\u2193", "\u2191", " "]
|
54 |
+
}
|
checkpoints/paimeng/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c26f3ab4835c46f91abcf5f5069e20b822657be15a58d818cc6fd2d21abe39a
|
3 |
+
size 476967685
|
checkpoints/tmp/config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 1000,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 2e-4,
|
8 |
+
"betas": [0.8, 0.99],
|
9 |
+
"eps": 1e-9,
|
10 |
+
"batch_size": 32,
|
11 |
+
"fp16_run": true,
|
12 |
+
"lr_decay": 0.999875,
|
13 |
+
"segment_size": 8192,
|
14 |
+
"init_lr_ratio": 1,
|
15 |
+
"warmup_epochs": 0,
|
16 |
+
"c_mel": 45,
|
17 |
+
"c_kl": 1.0
|
18 |
+
},
|
19 |
+
"data": {
|
20 |
+
"training_files":"/www/training/dataset/train_with_paimeng2.txt",
|
21 |
+
"validation_files":"/www/training/dataset/val_filelist.txt",
|
22 |
+
"text_cleaners":["cjke_cleaners"],
|
23 |
+
"max_wav_value": 32768.0,
|
24 |
+
"sampling_rate": 22050,
|
25 |
+
"filter_length": 1024,
|
26 |
+
"hop_length": 256,
|
27 |
+
"win_length": 1024,
|
28 |
+
"n_mel_channels": 80,
|
29 |
+
"mel_fmin": 0.0,
|
30 |
+
"mel_fmax": null,
|
31 |
+
"add_blank": true,
|
32 |
+
"n_speakers": 50,
|
33 |
+
"cleaned_text": true
|
34 |
+
},
|
35 |
+
"model": {
|
36 |
+
"inter_channels": 192,
|
37 |
+
"hidden_channels": 192,
|
38 |
+
"filter_channels": 768,
|
39 |
+
"n_heads": 2,
|
40 |
+
"n_layers": 6,
|
41 |
+
"kernel_size": 3,
|
42 |
+
"p_dropout": 0.1,
|
43 |
+
"resblock": "1",
|
44 |
+
"resblock_kernel_sizes": [3,7,11],
|
45 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
46 |
+
"upsample_rates": [8,8,2,2],
|
47 |
+
"upsample_initial_channel": 512,
|
48 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
49 |
+
"n_layers_q": 3,
|
50 |
+
"use_spectral_norm": false,
|
51 |
+
"gin_channels": 256
|
52 |
+
},
|
53 |
+
"symbols": ["_", ",", ".", "!", "?", "-", "~", "\u2026", "A", "E", "I", "N", "O", "Q", "U", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "r", "s", "t", "u", "v", "w", "y", "z", "\u0283", "\u02a7", "\u02a6", "\u026f", "\u0279", "\u0259", "\u0265", "\u207c", "\u02b0", "`", "\u2192", "\u2193", "\u2191", " "]
|
54 |
+
}
|
checkpoints/tmp/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8b14630c79a536cd9bb32daf850ae24ffe7955608c66cdb799421fb5a4f1309
|
3 |
+
size 476964251
|
commons.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
import torch.jit
|
5 |
+
|
6 |
+
|
7 |
+
def script_method(fn, _rcb=None):
|
8 |
+
return fn
|
9 |
+
|
10 |
+
|
11 |
+
def script(obj, optimize=True, _frames_up=0, _rcb=None):
|
12 |
+
return obj
|
13 |
+
|
14 |
+
|
15 |
+
torch.jit.script_method = script_method
|
16 |
+
torch.jit.script = script
|
17 |
+
|
18 |
+
|
19 |
+
def init_weights(m, mean=0.0, std=0.01):
|
20 |
+
classname = m.__class__.__name__
|
21 |
+
if classname.find("Conv") != -1:
|
22 |
+
m.weight.data.normal_(mean, std)
|
23 |
+
|
24 |
+
|
25 |
+
def get_padding(kernel_size, dilation=1):
|
26 |
+
return int((kernel_size*dilation - dilation)/2)
|
27 |
+
|
28 |
+
|
29 |
+
def intersperse(lst, item):
|
30 |
+
result = [item] * (len(lst) * 2 + 1)
|
31 |
+
result[1::2] = lst
|
32 |
+
return result
|
33 |
+
|
34 |
+
|
35 |
+
def slice_segments(x, ids_str, segment_size=4):
|
36 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
37 |
+
for i in range(x.size(0)):
|
38 |
+
idx_str = ids_str[i]
|
39 |
+
idx_end = idx_str + segment_size
|
40 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
41 |
+
return ret
|
42 |
+
|
43 |
+
|
44 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
45 |
+
b, d, t = x.size()
|
46 |
+
if x_lengths is None:
|
47 |
+
x_lengths = t
|
48 |
+
ids_str_max = x_lengths - segment_size + 1
|
49 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
50 |
+
ret = slice_segments(x, ids_str, segment_size)
|
51 |
+
return ret, ids_str
|
52 |
+
|
53 |
+
|
54 |
+
def subsequent_mask(length):
|
55 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
56 |
+
return mask
|
57 |
+
|
58 |
+
|
59 |
+
@torch.jit.script
|
60 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
61 |
+
n_channels_int = n_channels[0]
|
62 |
+
in_act = input_a + input_b
|
63 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
64 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
65 |
+
acts = t_act * s_act
|
66 |
+
return acts
|
67 |
+
|
68 |
+
|
69 |
+
def convert_pad_shape(pad_shape):
|
70 |
+
l = pad_shape[::-1]
|
71 |
+
pad_shape = [item for sublist in l for item in sublist]
|
72 |
+
return pad_shape
|
73 |
+
|
74 |
+
|
75 |
+
def sequence_mask(length, max_length=None):
|
76 |
+
if max_length is None:
|
77 |
+
max_length = length.max()
|
78 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
79 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
80 |
+
|
81 |
+
|
82 |
+
def generate_path(duration, mask):
|
83 |
+
"""
|
84 |
+
duration: [b, 1, t_x]
|
85 |
+
mask: [b, 1, t_y, t_x]
|
86 |
+
"""
|
87 |
+
device = duration.device
|
88 |
+
|
89 |
+
b, _, t_y, t_x = mask.shape
|
90 |
+
cum_duration = torch.cumsum(duration, -1)
|
91 |
+
|
92 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
93 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
94 |
+
path = path.view(b, t_x, t_y)
|
95 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
96 |
+
path = path.unsqueeze(1).transpose(2,3) * mask
|
97 |
+
return path
|
jieba/dict.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
models.py
ADDED
@@ -0,0 +1,498 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
6 |
+
from torch.nn import functional as F
|
7 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
8 |
+
|
9 |
+
import attentions
|
10 |
+
import commons
|
11 |
+
import modules
|
12 |
+
from commons import init_weights, get_padding
|
13 |
+
|
14 |
+
|
15 |
+
class StochasticDurationPredictor(nn.Module):
|
16 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
17 |
+
super().__init__()
|
18 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
19 |
+
self.in_channels = in_channels
|
20 |
+
self.filter_channels = filter_channels
|
21 |
+
self.kernel_size = kernel_size
|
22 |
+
self.p_dropout = p_dropout
|
23 |
+
self.n_flows = n_flows
|
24 |
+
self.gin_channels = gin_channels
|
25 |
+
|
26 |
+
self.log_flow = modules.Log()
|
27 |
+
self.flows = nn.ModuleList()
|
28 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
29 |
+
for i in range(n_flows):
|
30 |
+
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
31 |
+
self.flows.append(modules.Flip())
|
32 |
+
|
33 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
34 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
35 |
+
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
36 |
+
self.post_flows = nn.ModuleList()
|
37 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
38 |
+
for i in range(4):
|
39 |
+
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
40 |
+
self.post_flows.append(modules.Flip())
|
41 |
+
|
42 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
43 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
44 |
+
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
45 |
+
if gin_channels != 0:
|
46 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
47 |
+
|
48 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
49 |
+
x = torch.detach(x)
|
50 |
+
x = self.pre(x)
|
51 |
+
if g is not None:
|
52 |
+
g = torch.detach(g)
|
53 |
+
x = x + self.cond(g)
|
54 |
+
x = self.convs(x, x_mask)
|
55 |
+
x = self.proj(x) * x_mask
|
56 |
+
|
57 |
+
if not reverse:
|
58 |
+
flows = self.flows
|
59 |
+
assert w is not None
|
60 |
+
|
61 |
+
logdet_tot_q = 0
|
62 |
+
h_w = self.post_pre(w)
|
63 |
+
h_w = self.post_convs(h_w, x_mask)
|
64 |
+
h_w = self.post_proj(h_w) * x_mask
|
65 |
+
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
66 |
+
z_q = e_q
|
67 |
+
for flow in self.post_flows:
|
68 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
69 |
+
logdet_tot_q += logdet_q
|
70 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
71 |
+
u = torch.sigmoid(z_u) * x_mask
|
72 |
+
z0 = (w - u) * x_mask
|
73 |
+
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
|
74 |
+
logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2]) - logdet_tot_q
|
75 |
+
|
76 |
+
logdet_tot = 0
|
77 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
78 |
+
logdet_tot += logdet
|
79 |
+
z = torch.cat([z0, z1], 1)
|
80 |
+
for flow in flows:
|
81 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
82 |
+
logdet_tot = logdet_tot + logdet
|
83 |
+
nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot
|
84 |
+
return nll + logq # [b]
|
85 |
+
else:
|
86 |
+
flows = list(reversed(self.flows))
|
87 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
88 |
+
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
89 |
+
for flow in flows:
|
90 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
91 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
92 |
+
logw = z0
|
93 |
+
return logw
|
94 |
+
|
95 |
+
|
96 |
+
class DurationPredictor(nn.Module):
|
97 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
98 |
+
super().__init__()
|
99 |
+
|
100 |
+
self.in_channels = in_channels
|
101 |
+
self.filter_channels = filter_channels
|
102 |
+
self.kernel_size = kernel_size
|
103 |
+
self.p_dropout = p_dropout
|
104 |
+
self.gin_channels = gin_channels
|
105 |
+
|
106 |
+
self.drop = nn.Dropout(p_dropout)
|
107 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
108 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
109 |
+
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
110 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
111 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
112 |
+
|
113 |
+
if gin_channels != 0:
|
114 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
115 |
+
|
116 |
+
def forward(self, x, x_mask, g=None):
|
117 |
+
x = torch.detach(x)
|
118 |
+
if g is not None:
|
119 |
+
g = torch.detach(g)
|
120 |
+
x = x + self.cond(g)
|
121 |
+
x = self.conv_1(x * x_mask)
|
122 |
+
x = torch.relu(x)
|
123 |
+
x = self.norm_1(x)
|
124 |
+
x = self.drop(x)
|
125 |
+
x = self.conv_2(x * x_mask)
|
126 |
+
x = torch.relu(x)
|
127 |
+
x = self.norm_2(x)
|
128 |
+
x = self.drop(x)
|
129 |
+
x = self.proj(x * x_mask)
|
130 |
+
return x * x_mask
|
131 |
+
|
132 |
+
|
133 |
+
class TextEncoder(nn.Module):
|
134 |
+
def __init__(self,
|
135 |
+
n_vocab,
|
136 |
+
out_channels,
|
137 |
+
hidden_channels,
|
138 |
+
filter_channels,
|
139 |
+
n_heads,
|
140 |
+
n_layers,
|
141 |
+
kernel_size,
|
142 |
+
p_dropout):
|
143 |
+
super().__init__()
|
144 |
+
self.n_vocab = n_vocab
|
145 |
+
self.out_channels = out_channels
|
146 |
+
self.hidden_channels = hidden_channels
|
147 |
+
self.filter_channels = filter_channels
|
148 |
+
self.n_heads = n_heads
|
149 |
+
self.n_layers = n_layers
|
150 |
+
self.kernel_size = kernel_size
|
151 |
+
self.p_dropout = p_dropout
|
152 |
+
|
153 |
+
if self.n_vocab != 0:
|
154 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
155 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels ** -0.5)
|
156 |
+
|
157 |
+
self.encoder = attentions.Encoder(
|
158 |
+
hidden_channels,
|
159 |
+
filter_channels,
|
160 |
+
n_heads,
|
161 |
+
n_layers,
|
162 |
+
kernel_size,
|
163 |
+
p_dropout)
|
164 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
165 |
+
|
166 |
+
def forward(self, x, x_lengths):
|
167 |
+
if self.n_vocab != 0:
|
168 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
169 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
170 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
171 |
+
|
172 |
+
x = self.encoder(x * x_mask, x_mask)
|
173 |
+
stats = self.proj(x) * x_mask
|
174 |
+
|
175 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
176 |
+
return x, m, logs, x_mask
|
177 |
+
|
178 |
+
|
179 |
+
class ResidualCouplingBlock(nn.Module):
|
180 |
+
def __init__(self,
|
181 |
+
channels,
|
182 |
+
hidden_channels,
|
183 |
+
kernel_size,
|
184 |
+
dilation_rate,
|
185 |
+
n_layers,
|
186 |
+
n_flows=4,
|
187 |
+
gin_channels=0):
|
188 |
+
super().__init__()
|
189 |
+
self.channels = channels
|
190 |
+
self.hidden_channels = hidden_channels
|
191 |
+
self.kernel_size = kernel_size
|
192 |
+
self.dilation_rate = dilation_rate
|
193 |
+
self.n_layers = n_layers
|
194 |
+
self.n_flows = n_flows
|
195 |
+
self.gin_channels = gin_channels
|
196 |
+
|
197 |
+
self.flows = nn.ModuleList()
|
198 |
+
for i in range(n_flows):
|
199 |
+
self.flows.append(
|
200 |
+
modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
|
201 |
+
gin_channels=gin_channels, mean_only=True))
|
202 |
+
self.flows.append(modules.Flip())
|
203 |
+
|
204 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
205 |
+
if not reverse:
|
206 |
+
for flow in self.flows:
|
207 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
208 |
+
else:
|
209 |
+
for flow in reversed(self.flows):
|
210 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
211 |
+
return x
|
212 |
+
|
213 |
+
|
214 |
+
class PosteriorEncoder(nn.Module):
|
215 |
+
def __init__(self,
|
216 |
+
in_channels,
|
217 |
+
out_channels,
|
218 |
+
hidden_channels,
|
219 |
+
kernel_size,
|
220 |
+
dilation_rate,
|
221 |
+
n_layers,
|
222 |
+
gin_channels=0):
|
223 |
+
super().__init__()
|
224 |
+
self.in_channels = in_channels
|
225 |
+
self.out_channels = out_channels
|
226 |
+
self.hidden_channels = hidden_channels
|
227 |
+
self.kernel_size = kernel_size
|
228 |
+
self.dilation_rate = dilation_rate
|
229 |
+
self.n_layers = n_layers
|
230 |
+
self.gin_channels = gin_channels
|
231 |
+
|
232 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
233 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
234 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
235 |
+
|
236 |
+
def forward(self, x, x_lengths, g=None):
|
237 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
238 |
+
x = self.pre(x) * x_mask
|
239 |
+
x = self.enc(x, x_mask, g=g)
|
240 |
+
stats = self.proj(x) * x_mask
|
241 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
242 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
243 |
+
return z, m, logs, x_mask
|
244 |
+
|
245 |
+
|
246 |
+
class Generator(torch.nn.Module):
|
247 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
248 |
+
upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
249 |
+
super(Generator, self).__init__()
|
250 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
251 |
+
self.num_upsamples = len(upsample_rates)
|
252 |
+
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
253 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
254 |
+
|
255 |
+
self.ups = nn.ModuleList()
|
256 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
257 |
+
self.ups.append(weight_norm(
|
258 |
+
ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
|
259 |
+
k, u, padding=(k - u) // 2)))
|
260 |
+
|
261 |
+
self.resblocks = nn.ModuleList()
|
262 |
+
for i in range(len(self.ups)):
|
263 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
264 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
265 |
+
self.resblocks.append(resblock(ch, k, d))
|
266 |
+
|
267 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
268 |
+
self.ups.apply(init_weights)
|
269 |
+
|
270 |
+
if gin_channels != 0:
|
271 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
272 |
+
|
273 |
+
def forward(self, x, g=None):
|
274 |
+
x = self.conv_pre(x)
|
275 |
+
if g is not None:
|
276 |
+
x = x + self.cond(g)
|
277 |
+
|
278 |
+
for i in range(self.num_upsamples):
|
279 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
280 |
+
x = self.ups[i](x)
|
281 |
+
xs = None
|
282 |
+
for j in range(self.num_kernels):
|
283 |
+
if xs is None:
|
284 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
285 |
+
else:
|
286 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
287 |
+
x = xs / self.num_kernels
|
288 |
+
x = F.leaky_relu(x)
|
289 |
+
x = self.conv_post(x)
|
290 |
+
x = torch.tanh(x)
|
291 |
+
|
292 |
+
return x
|
293 |
+
|
294 |
+
def remove_weight_norm(self):
|
295 |
+
print('Removing weight norm...')
|
296 |
+
for l in self.ups:
|
297 |
+
remove_weight_norm(l)
|
298 |
+
for l in self.resblocks:
|
299 |
+
l.remove_weight_norm()
|
300 |
+
|
301 |
+
|
302 |
+
class DiscriminatorP(torch.nn.Module):
|
303 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
304 |
+
super(DiscriminatorP, self).__init__()
|
305 |
+
self.period = period
|
306 |
+
self.use_spectral_norm = use_spectral_norm
|
307 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
308 |
+
self.convs = nn.ModuleList([
|
309 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
310 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
311 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
312 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
313 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
314 |
+
])
|
315 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
316 |
+
|
317 |
+
def forward(self, x):
|
318 |
+
fmap = []
|
319 |
+
|
320 |
+
# 1d to 2d
|
321 |
+
b, c, t = x.shape
|
322 |
+
if t % self.period != 0: # pad first
|
323 |
+
n_pad = self.period - (t % self.period)
|
324 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
325 |
+
t = t + n_pad
|
326 |
+
x = x.view(b, c, t // self.period, self.period)
|
327 |
+
|
328 |
+
for l in self.convs:
|
329 |
+
x = l(x)
|
330 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
331 |
+
fmap.append(x)
|
332 |
+
x = self.conv_post(x)
|
333 |
+
fmap.append(x)
|
334 |
+
x = torch.flatten(x, 1, -1)
|
335 |
+
|
336 |
+
return x, fmap
|
337 |
+
|
338 |
+
|
339 |
+
class DiscriminatorS(torch.nn.Module):
|
340 |
+
def __init__(self, use_spectral_norm=False):
|
341 |
+
super(DiscriminatorS, self).__init__()
|
342 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
343 |
+
self.convs = nn.ModuleList([
|
344 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
345 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
346 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
347 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
348 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
349 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
350 |
+
])
|
351 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
352 |
+
|
353 |
+
def forward(self, x):
|
354 |
+
fmap = []
|
355 |
+
|
356 |
+
for l in self.convs:
|
357 |
+
x = l(x)
|
358 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
359 |
+
fmap.append(x)
|
360 |
+
x = self.conv_post(x)
|
361 |
+
fmap.append(x)
|
362 |
+
x = torch.flatten(x, 1, -1)
|
363 |
+
|
364 |
+
return x, fmap
|
365 |
+
|
366 |
+
|
367 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
368 |
+
def __init__(self, use_spectral_norm=False):
|
369 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
370 |
+
periods = [2, 3, 5, 7, 11]
|
371 |
+
|
372 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
373 |
+
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
374 |
+
self.discriminators = nn.ModuleList(discs)
|
375 |
+
|
376 |
+
def forward(self, y, y_hat):
|
377 |
+
y_d_rs = []
|
378 |
+
y_d_gs = []
|
379 |
+
fmap_rs = []
|
380 |
+
fmap_gs = []
|
381 |
+
for i, d in enumerate(self.discriminators):
|
382 |
+
y_d_r, fmap_r = d(y)
|
383 |
+
y_d_g, fmap_g = d(y_hat)
|
384 |
+
y_d_rs.append(y_d_r)
|
385 |
+
y_d_gs.append(y_d_g)
|
386 |
+
fmap_rs.append(fmap_r)
|
387 |
+
fmap_gs.append(fmap_g)
|
388 |
+
|
389 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
390 |
+
|
391 |
+
|
392 |
+
class SynthesizerTrn(nn.Module):
|
393 |
+
"""
|
394 |
+
Synthesizer for Training
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self,
|
398 |
+
n_vocab,
|
399 |
+
spec_channels,
|
400 |
+
segment_size,
|
401 |
+
inter_channels,
|
402 |
+
hidden_channels,
|
403 |
+
filter_channels,
|
404 |
+
n_heads,
|
405 |
+
n_layers,
|
406 |
+
kernel_size,
|
407 |
+
p_dropout,
|
408 |
+
resblock,
|
409 |
+
resblock_kernel_sizes,
|
410 |
+
resblock_dilation_sizes,
|
411 |
+
upsample_rates,
|
412 |
+
upsample_initial_channel,
|
413 |
+
upsample_kernel_sizes,
|
414 |
+
n_speakers=0,
|
415 |
+
gin_channels=0,
|
416 |
+
use_sdp=True,
|
417 |
+
**kwargs):
|
418 |
+
|
419 |
+
super().__init__()
|
420 |
+
self.n_vocab = n_vocab
|
421 |
+
self.spec_channels = spec_channels
|
422 |
+
self.inter_channels = inter_channels
|
423 |
+
self.hidden_channels = hidden_channels
|
424 |
+
self.filter_channels = filter_channels
|
425 |
+
self.n_heads = n_heads
|
426 |
+
self.n_layers = n_layers
|
427 |
+
self.kernel_size = kernel_size
|
428 |
+
self.p_dropout = p_dropout
|
429 |
+
self.resblock = resblock
|
430 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
431 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
432 |
+
self.upsample_rates = upsample_rates
|
433 |
+
self.upsample_initial_channel = upsample_initial_channel
|
434 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
435 |
+
self.segment_size = segment_size
|
436 |
+
self.n_speakers = n_speakers
|
437 |
+
self.gin_channels = gin_channels
|
438 |
+
|
439 |
+
self.use_sdp = use_sdp
|
440 |
+
|
441 |
+
self.enc_p = TextEncoder(n_vocab,
|
442 |
+
inter_channels,
|
443 |
+
hidden_channels,
|
444 |
+
filter_channels,
|
445 |
+
n_heads,
|
446 |
+
n_layers,
|
447 |
+
kernel_size,
|
448 |
+
p_dropout)
|
449 |
+
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
450 |
+
upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
451 |
+
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
|
452 |
+
gin_channels=gin_channels)
|
453 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
454 |
+
|
455 |
+
if use_sdp:
|
456 |
+
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
457 |
+
else:
|
458 |
+
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
459 |
+
|
460 |
+
if n_speakers > 1:
|
461 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
462 |
+
|
463 |
+
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
464 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
465 |
+
if self.n_speakers > 0:
|
466 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
467 |
+
else:
|
468 |
+
g = None
|
469 |
+
|
470 |
+
if self.use_sdp:
|
471 |
+
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
472 |
+
else:
|
473 |
+
logw = self.dp(x, x_mask, g=g)
|
474 |
+
w = torch.exp(logw) * x_mask * length_scale
|
475 |
+
w_ceil = torch.ceil(w)
|
476 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
477 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
478 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
479 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
480 |
+
|
481 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
482 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1,
|
483 |
+
2) # [b, t', t], [b, t, d] -> [b, d, t']
|
484 |
+
|
485 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
486 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
487 |
+
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
488 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
489 |
+
|
490 |
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
491 |
+
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
492 |
+
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
493 |
+
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
494 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
495 |
+
z_p = self.flow(z, y_mask, g=g_src)
|
496 |
+
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
497 |
+
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
498 |
+
return o_hat, y_mask, (z, z_p, z_hat)
|
modules.py
ADDED
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
from torch.nn import Conv1d
|
7 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
8 |
+
|
9 |
+
import commons
|
10 |
+
from commons import init_weights, get_padding
|
11 |
+
from transforms import piecewise_rational_quadratic_transform
|
12 |
+
|
13 |
+
|
14 |
+
LRELU_SLOPE = 0.1
|
15 |
+
|
16 |
+
|
17 |
+
class LayerNorm(nn.Module):
|
18 |
+
def __init__(self, channels, eps=1e-5):
|
19 |
+
super().__init__()
|
20 |
+
self.channels = channels
|
21 |
+
self.eps = eps
|
22 |
+
|
23 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
24 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
x = x.transpose(1, -1)
|
28 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
29 |
+
return x.transpose(1, -1)
|
30 |
+
|
31 |
+
|
32 |
+
class ConvReluNorm(nn.Module):
|
33 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
34 |
+
super().__init__()
|
35 |
+
self.in_channels = in_channels
|
36 |
+
self.hidden_channels = hidden_channels
|
37 |
+
self.out_channels = out_channels
|
38 |
+
self.kernel_size = kernel_size
|
39 |
+
self.n_layers = n_layers
|
40 |
+
self.p_dropout = p_dropout
|
41 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
42 |
+
|
43 |
+
self.conv_layers = nn.ModuleList()
|
44 |
+
self.norm_layers = nn.ModuleList()
|
45 |
+
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
46 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
47 |
+
self.relu_drop = nn.Sequential(
|
48 |
+
nn.ReLU(),
|
49 |
+
nn.Dropout(p_dropout))
|
50 |
+
for _ in range(n_layers-1):
|
51 |
+
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
52 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
53 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
54 |
+
self.proj.weight.data.zero_()
|
55 |
+
self.proj.bias.data.zero_()
|
56 |
+
|
57 |
+
def forward(self, x, x_mask):
|
58 |
+
x_org = x
|
59 |
+
for i in range(self.n_layers):
|
60 |
+
x = self.conv_layers[i](x * x_mask)
|
61 |
+
x = self.norm_layers[i](x)
|
62 |
+
x = self.relu_drop(x)
|
63 |
+
x = x_org + self.proj(x)
|
64 |
+
return x * x_mask
|
65 |
+
|
66 |
+
|
67 |
+
class DDSConv(nn.Module):
|
68 |
+
"""
|
69 |
+
Dialted and Depth-Separable Convolution
|
70 |
+
"""
|
71 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
72 |
+
super().__init__()
|
73 |
+
self.channels = channels
|
74 |
+
self.kernel_size = kernel_size
|
75 |
+
self.n_layers = n_layers
|
76 |
+
self.p_dropout = p_dropout
|
77 |
+
|
78 |
+
self.drop = nn.Dropout(p_dropout)
|
79 |
+
self.convs_sep = nn.ModuleList()
|
80 |
+
self.convs_1x1 = nn.ModuleList()
|
81 |
+
self.norms_1 = nn.ModuleList()
|
82 |
+
self.norms_2 = nn.ModuleList()
|
83 |
+
for i in range(n_layers):
|
84 |
+
dilation = kernel_size ** i
|
85 |
+
padding = (kernel_size * dilation - dilation) // 2
|
86 |
+
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
87 |
+
groups=channels, dilation=dilation, padding=padding
|
88 |
+
))
|
89 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
90 |
+
self.norms_1.append(LayerNorm(channels))
|
91 |
+
self.norms_2.append(LayerNorm(channels))
|
92 |
+
|
93 |
+
def forward(self, x, x_mask, g=None):
|
94 |
+
if g is not None:
|
95 |
+
x = x + g
|
96 |
+
for i in range(self.n_layers):
|
97 |
+
y = self.convs_sep[i](x * x_mask)
|
98 |
+
y = self.norms_1[i](y)
|
99 |
+
y = F.gelu(y)
|
100 |
+
y = self.convs_1x1[i](y)
|
101 |
+
y = self.norms_2[i](y)
|
102 |
+
y = F.gelu(y)
|
103 |
+
y = self.drop(y)
|
104 |
+
x = x + y
|
105 |
+
return x * x_mask
|
106 |
+
|
107 |
+
|
108 |
+
class WN(torch.nn.Module):
|
109 |
+
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
110 |
+
super(WN, self).__init__()
|
111 |
+
assert(kernel_size % 2 == 1)
|
112 |
+
self.hidden_channels =hidden_channels
|
113 |
+
self.kernel_size = kernel_size,
|
114 |
+
self.dilation_rate = dilation_rate
|
115 |
+
self.n_layers = n_layers
|
116 |
+
self.gin_channels = gin_channels
|
117 |
+
self.p_dropout = p_dropout
|
118 |
+
|
119 |
+
self.in_layers = torch.nn.ModuleList()
|
120 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
121 |
+
self.drop = nn.Dropout(p_dropout)
|
122 |
+
|
123 |
+
if gin_channels != 0:
|
124 |
+
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
125 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
126 |
+
|
127 |
+
for i in range(n_layers):
|
128 |
+
dilation = dilation_rate ** i
|
129 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
130 |
+
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
131 |
+
dilation=dilation, padding=padding)
|
132 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
133 |
+
self.in_layers.append(in_layer)
|
134 |
+
|
135 |
+
# last one is not necessary
|
136 |
+
if i < n_layers - 1:
|
137 |
+
res_skip_channels = 2 * hidden_channels
|
138 |
+
else:
|
139 |
+
res_skip_channels = hidden_channels
|
140 |
+
|
141 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
142 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
143 |
+
self.res_skip_layers.append(res_skip_layer)
|
144 |
+
|
145 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
146 |
+
output = torch.zeros_like(x)
|
147 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
148 |
+
|
149 |
+
if g is not None:
|
150 |
+
g = self.cond_layer(g)
|
151 |
+
|
152 |
+
for i in range(self.n_layers):
|
153 |
+
x_in = self.in_layers[i](x)
|
154 |
+
if g is not None:
|
155 |
+
cond_offset = i * 2 * self.hidden_channels
|
156 |
+
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
157 |
+
else:
|
158 |
+
g_l = torch.zeros_like(x_in)
|
159 |
+
|
160 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
161 |
+
x_in,
|
162 |
+
g_l,
|
163 |
+
n_channels_tensor)
|
164 |
+
acts = self.drop(acts)
|
165 |
+
|
166 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
167 |
+
if i < self.n_layers - 1:
|
168 |
+
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
169 |
+
x = (x + res_acts) * x_mask
|
170 |
+
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
171 |
+
else:
|
172 |
+
output = output + res_skip_acts
|
173 |
+
return output * x_mask
|
174 |
+
|
175 |
+
def remove_weight_norm(self):
|
176 |
+
if self.gin_channels != 0:
|
177 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
178 |
+
for l in self.in_layers:
|
179 |
+
torch.nn.utils.remove_weight_norm(l)
|
180 |
+
for l in self.res_skip_layers:
|
181 |
+
torch.nn.utils.remove_weight_norm(l)
|
182 |
+
|
183 |
+
|
184 |
+
class ResBlock1(torch.nn.Module):
|
185 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
186 |
+
super(ResBlock1, self).__init__()
|
187 |
+
self.convs1 = nn.ModuleList([
|
188 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
189 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
190 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
191 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
192 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
193 |
+
padding=get_padding(kernel_size, dilation[2])))
|
194 |
+
])
|
195 |
+
self.convs1.apply(init_weights)
|
196 |
+
|
197 |
+
self.convs2 = nn.ModuleList([
|
198 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
199 |
+
padding=get_padding(kernel_size, 1))),
|
200 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
201 |
+
padding=get_padding(kernel_size, 1))),
|
202 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
203 |
+
padding=get_padding(kernel_size, 1)))
|
204 |
+
])
|
205 |
+
self.convs2.apply(init_weights)
|
206 |
+
|
207 |
+
def forward(self, x, x_mask=None):
|
208 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
209 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
210 |
+
if x_mask is not None:
|
211 |
+
xt = xt * x_mask
|
212 |
+
xt = c1(xt)
|
213 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
214 |
+
if x_mask is not None:
|
215 |
+
xt = xt * x_mask
|
216 |
+
xt = c2(xt)
|
217 |
+
x = xt + x
|
218 |
+
if x_mask is not None:
|
219 |
+
x = x * x_mask
|
220 |
+
return x
|
221 |
+
|
222 |
+
def remove_weight_norm(self):
|
223 |
+
for l in self.convs1:
|
224 |
+
remove_weight_norm(l)
|
225 |
+
for l in self.convs2:
|
226 |
+
remove_weight_norm(l)
|
227 |
+
|
228 |
+
|
229 |
+
class ResBlock2(torch.nn.Module):
|
230 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
231 |
+
super(ResBlock2, self).__init__()
|
232 |
+
self.convs = nn.ModuleList([
|
233 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
234 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
235 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
236 |
+
padding=get_padding(kernel_size, dilation[1])))
|
237 |
+
])
|
238 |
+
self.convs.apply(init_weights)
|
239 |
+
|
240 |
+
def forward(self, x, x_mask=None):
|
241 |
+
for c in self.convs:
|
242 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
243 |
+
if x_mask is not None:
|
244 |
+
xt = xt * x_mask
|
245 |
+
xt = c(xt)
|
246 |
+
x = xt + x
|
247 |
+
if x_mask is not None:
|
248 |
+
x = x * x_mask
|
249 |
+
return x
|
250 |
+
|
251 |
+
def remove_weight_norm(self):
|
252 |
+
for l in self.convs:
|
253 |
+
remove_weight_norm(l)
|
254 |
+
|
255 |
+
|
256 |
+
class Log(nn.Module):
|
257 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
258 |
+
if not reverse:
|
259 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
260 |
+
logdet = torch.sum(-y, [1, 2])
|
261 |
+
return y, logdet
|
262 |
+
else:
|
263 |
+
x = torch.exp(x) * x_mask
|
264 |
+
return x
|
265 |
+
|
266 |
+
|
267 |
+
class Flip(nn.Module):
|
268 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
269 |
+
x = torch.flip(x, [1])
|
270 |
+
if not reverse:
|
271 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
272 |
+
return x, logdet
|
273 |
+
else:
|
274 |
+
return x
|
275 |
+
|
276 |
+
|
277 |
+
class ElementwiseAffine(nn.Module):
|
278 |
+
def __init__(self, channels):
|
279 |
+
super().__init__()
|
280 |
+
self.channels = channels
|
281 |
+
self.m = nn.Parameter(torch.zeros(channels,1))
|
282 |
+
self.logs = nn.Parameter(torch.zeros(channels,1))
|
283 |
+
|
284 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
285 |
+
if not reverse:
|
286 |
+
y = self.m + torch.exp(self.logs) * x
|
287 |
+
y = y * x_mask
|
288 |
+
logdet = torch.sum(self.logs * x_mask, [1,2])
|
289 |
+
return y, logdet
|
290 |
+
else:
|
291 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
292 |
+
return x
|
293 |
+
|
294 |
+
|
295 |
+
class ResidualCouplingLayer(nn.Module):
|
296 |
+
def __init__(self,
|
297 |
+
channels,
|
298 |
+
hidden_channels,
|
299 |
+
kernel_size,
|
300 |
+
dilation_rate,
|
301 |
+
n_layers,
|
302 |
+
p_dropout=0,
|
303 |
+
gin_channels=0,
|
304 |
+
mean_only=False):
|
305 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
306 |
+
super().__init__()
|
307 |
+
self.channels = channels
|
308 |
+
self.hidden_channels = hidden_channels
|
309 |
+
self.kernel_size = kernel_size
|
310 |
+
self.dilation_rate = dilation_rate
|
311 |
+
self.n_layers = n_layers
|
312 |
+
self.half_channels = channels // 2
|
313 |
+
self.mean_only = mean_only
|
314 |
+
|
315 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
316 |
+
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
317 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
318 |
+
self.post.weight.data.zero_()
|
319 |
+
self.post.bias.data.zero_()
|
320 |
+
|
321 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
322 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
323 |
+
h = self.pre(x0) * x_mask
|
324 |
+
h = self.enc(h, x_mask, g=g)
|
325 |
+
stats = self.post(h) * x_mask
|
326 |
+
if not self.mean_only:
|
327 |
+
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
328 |
+
else:
|
329 |
+
m = stats
|
330 |
+
logs = torch.zeros_like(m)
|
331 |
+
|
332 |
+
if not reverse:
|
333 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
334 |
+
x = torch.cat([x0, x1], 1)
|
335 |
+
logdet = torch.sum(logs, [1,2])
|
336 |
+
return x, logdet
|
337 |
+
else:
|
338 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
339 |
+
x = torch.cat([x0, x1], 1)
|
340 |
+
return x
|
341 |
+
|
342 |
+
|
343 |
+
class ConvFlow(nn.Module):
|
344 |
+
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
|
345 |
+
super().__init__()
|
346 |
+
self.in_channels = in_channels
|
347 |
+
self.filter_channels = filter_channels
|
348 |
+
self.kernel_size = kernel_size
|
349 |
+
self.n_layers = n_layers
|
350 |
+
self.num_bins = num_bins
|
351 |
+
self.tail_bound = tail_bound
|
352 |
+
self.half_channels = in_channels // 2
|
353 |
+
|
354 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
355 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
|
356 |
+
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
357 |
+
self.proj.weight.data.zero_()
|
358 |
+
self.proj.bias.data.zero_()
|
359 |
+
|
360 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
361 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
362 |
+
h = self.pre(x0)
|
363 |
+
h = self.convs(h, x_mask, g=g)
|
364 |
+
h = self.proj(h) * x_mask
|
365 |
+
|
366 |
+
b, c, t = x0.shape
|
367 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
368 |
+
|
369 |
+
unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
|
370 |
+
unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
|
371 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins:]
|
372 |
+
|
373 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(x1,
|
374 |
+
unnormalized_widths,
|
375 |
+
unnormalized_heights,
|
376 |
+
unnormalized_derivatives,
|
377 |
+
inverse=reverse,
|
378 |
+
tails='linear',
|
379 |
+
tail_bound=self.tail_bound
|
380 |
+
)
|
381 |
+
|
382 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
383 |
+
logdet = torch.sum(logabsdet * x_mask, [1,2])
|
384 |
+
if not reverse:
|
385 |
+
return x, logdet
|
386 |
+
else:
|
387 |
+
return x
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Cython==0.29.21
|
2 |
+
librosa==0.8.0
|
3 |
+
matplotlib==3.3.1
|
4 |
+
numpy==1.21.6
|
5 |
+
phonemizer==2.2.1
|
6 |
+
scipy==1.5.2
|
7 |
+
tensorboard==2.3.0
|
8 |
+
torch
|
9 |
+
torchvision
|
10 |
+
Unidecode==1.1.1
|
11 |
+
pyopenjtalk==0.2.0
|
12 |
+
jamo==0.4.1
|
13 |
+
pypinyin==0.44.0
|
14 |
+
jieba==0.42.1
|
15 |
+
cn2an==0.5.17
|
16 |
+
jieba==0.42.1
|
17 |
+
ipython==7.34.0
|
18 |
+
gradio==3.4.1
|
text/LICENSE
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (c) 2017 Keith Ito
|
2 |
+
|
3 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
4 |
+
of this software and associated documentation files (the "Software"), to deal
|
5 |
+
in the Software without restriction, including without limitation the rights
|
6 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
7 |
+
copies of the Software, and to permit persons to whom the Software is
|
8 |
+
furnished to do so, subject to the following conditions:
|
9 |
+
|
10 |
+
The above copyright notice and this permission notice shall be included in
|
11 |
+
all copies or substantial portions of the Software.
|
12 |
+
|
13 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
14 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
15 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
16 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
17 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
18 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
19 |
+
THE SOFTWARE.
|
text/__init__.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron """
|
2 |
+
from text import cleaners
|
3 |
+
|
4 |
+
|
5 |
+
def text_to_sequence(text, symbols, cleaner_names):
|
6 |
+
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
7 |
+
Args:
|
8 |
+
text: string to convert to a sequence
|
9 |
+
cleaner_names: names of the cleaner functions to run the text through
|
10 |
+
Returns:
|
11 |
+
List of integers corresponding to the symbols in the text
|
12 |
+
'''
|
13 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
14 |
+
|
15 |
+
sequence = []
|
16 |
+
|
17 |
+
clean_text = _clean_text(text, cleaner_names)
|
18 |
+
for symbol in clean_text:
|
19 |
+
if symbol not in _symbol_to_id.keys():
|
20 |
+
continue
|
21 |
+
symbol_id = _symbol_to_id[symbol]
|
22 |
+
sequence += [symbol_id]
|
23 |
+
return sequence
|
24 |
+
|
25 |
+
|
26 |
+
def _clean_text(text, cleaner_names):
|
27 |
+
for name in cleaner_names:
|
28 |
+
cleaner = getattr(cleaners, name)
|
29 |
+
if not cleaner:
|
30 |
+
raise Exception('Unknown cleaner: %s' % name)
|
31 |
+
text = cleaner(text)
|
32 |
+
return text
|
text/cleaners.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from text.japanese import japanese_to_romaji_with_accent, japanese_to_ipa, japanese_to_ipa2, japanese_to_ipa3
|
3 |
+
from text.mandarin import number_to_chinese, chinese_to_bopomofo, latin_to_bopomofo, chinese_to_romaji, chinese_to_lazy_ipa, chinese_to_ipa, chinese_to_ipa2
|
4 |
+
|
5 |
+
def japanese_cleaners(text):
|
6 |
+
from text.japanese import japanese_to_romaji_with_accent
|
7 |
+
text = japanese_to_romaji_with_accent(text)
|
8 |
+
if re.match('[A-Za-z]', text[-1]):
|
9 |
+
text += '.'
|
10 |
+
return text
|
11 |
+
|
12 |
+
|
13 |
+
def japanese_cleaners2(text):
|
14 |
+
return japanese_cleaners(text).replace('ts', 'ʦ').replace('...', '…')
|
15 |
+
|
16 |
+
|
17 |
+
def korean_cleaners(text):
|
18 |
+
'''Pipeline for Korean text'''
|
19 |
+
from text.korean import latin_to_hangul, number_to_hangul, divide_hangul
|
20 |
+
text = latin_to_hangul(text)
|
21 |
+
text = number_to_hangul(text)
|
22 |
+
text = divide_hangul(text)
|
23 |
+
if re.match('[\u3131-\u3163]', text[-1]):
|
24 |
+
text += '.'
|
25 |
+
return text
|
26 |
+
|
27 |
+
|
28 |
+
def chinese_cleaners(text):
|
29 |
+
'''Pipeline for Chinese text'''
|
30 |
+
from text.mandarin import number_to_chinese, chinese_to_bopomofo, latin_to_bopomofo
|
31 |
+
text = number_to_chinese(text)
|
32 |
+
text = chinese_to_bopomofo(text)
|
33 |
+
text = latin_to_bopomofo(text)
|
34 |
+
if re.match('[ˉˊˇˋ˙]', text[-1]):
|
35 |
+
text += '。'
|
36 |
+
return text
|
37 |
+
|
38 |
+
|
39 |
+
def zh_ja_mixture_cleaners(text):
|
40 |
+
from text.mandarin import chinese_to_romaji
|
41 |
+
from text.japanese import japanese_to_romaji_with_accent
|
42 |
+
chinese_texts = re.findall(r'\[ZH\].*?\[ZH\]', text)
|
43 |
+
japanese_texts = re.findall(r'\[JA\].*?\[JA\]', text)
|
44 |
+
for chinese_text in chinese_texts:
|
45 |
+
cleaned_text = chinese_to_romaji(chinese_text[4:-4])
|
46 |
+
text = text.replace(chinese_text, cleaned_text+' ', 1)
|
47 |
+
for japanese_text in japanese_texts:
|
48 |
+
cleaned_text = japanese_to_romaji_with_accent(
|
49 |
+
japanese_text[4:-4]).replace('ts', 'ʦ').replace('u', 'ɯ').replace('...', '…')
|
50 |
+
text = text.replace(japanese_text, cleaned_text+' ', 1)
|
51 |
+
text = text[:-1]
|
52 |
+
if re.match('[A-Za-zɯɹəɥ→↓↑]', text[-1]):
|
53 |
+
text += '.'
|
54 |
+
return text
|
55 |
+
|
56 |
+
|
57 |
+
def sanskrit_cleaners(text):
|
58 |
+
text = text.replace('॥', '।').replace('ॐ', 'ओम्')
|
59 |
+
if text[-1] != '।':
|
60 |
+
text += ' ।'
|
61 |
+
return text
|
62 |
+
|
63 |
+
|
64 |
+
def cjks_cleaners(text):
|
65 |
+
from text.mandarin import chinese_to_lazy_ipa
|
66 |
+
from text.japanese import japanese_to_ipa
|
67 |
+
from text.korean import korean_to_lazy_ipa
|
68 |
+
from text.sanskrit import devanagari_to_ipa
|
69 |
+
chinese_texts = re.findall(r'\[ZH\].*?\[ZH\]', text)
|
70 |
+
japanese_texts = re.findall(r'\[JA\].*?\[JA\]', text)
|
71 |
+
korean_texts = re.findall(r'\[KO\].*?\[KO\]', text)
|
72 |
+
sanskrit_texts = re.findall(r'\[SA\].*?\[SA\]', text)
|
73 |
+
for chinese_text in chinese_texts:
|
74 |
+
cleaned_text = chinese_to_lazy_ipa(chinese_text[4:-4])
|
75 |
+
text = text.replace(chinese_text, cleaned_text+' ', 1)
|
76 |
+
for japanese_text in japanese_texts:
|
77 |
+
cleaned_text = japanese_to_ipa(japanese_text[4:-4])
|
78 |
+
text = text.replace(japanese_text, cleaned_text+' ', 1)
|
79 |
+
for korean_text in korean_texts:
|
80 |
+
cleaned_text = korean_to_lazy_ipa(korean_text[4:-4])
|
81 |
+
text = text.replace(korean_text, cleaned_text+' ', 1)
|
82 |
+
for sanskrit_text in sanskrit_texts:
|
83 |
+
cleaned_text = devanagari_to_ipa(sanskrit_text[4:-4])
|
84 |
+
text = text.replace(sanskrit_text, cleaned_text+' ', 1)
|
85 |
+
text = text[:-1]
|
86 |
+
if re.match(r'[^\.,!\?\-…~]', text[-1]):
|
87 |
+
text += '.'
|
88 |
+
return text
|
89 |
+
|
90 |
+
def cjke_cleaners(text):
|
91 |
+
chinese_texts = re.findall(r'\[ZH\].*?\[ZH\]', text)
|
92 |
+
japanese_texts = re.findall(r'\[JA\].*?\[JA\]', text)
|
93 |
+
for chinese_text in chinese_texts:
|
94 |
+
cleaned_text = chinese_to_lazy_ipa(chinese_text[4:-4])
|
95 |
+
cleaned_text = cleaned_text.replace(
|
96 |
+
'ʧ', 'tʃ').replace('ʦ', 'ts').replace('ɥan', 'ɥæn')
|
97 |
+
text = text.replace(chinese_text, cleaned_text+' ', 1)
|
98 |
+
for japanese_text in japanese_texts:
|
99 |
+
cleaned_text = japanese_to_ipa(japanese_text[4:-4])
|
100 |
+
cleaned_text = cleaned_text.replace('ʧ', 'tʃ').replace(
|
101 |
+
'ʦ', 'ts').replace('ɥan', 'ɥæn').replace('ʥ', 'dz')
|
102 |
+
text = text.replace(japanese_text, cleaned_text+' ', 1)
|
103 |
+
text = text[:-1]
|
104 |
+
if re.match(r'[^\.,!\?\-…~]', text[-1]):
|
105 |
+
text += '.'
|
106 |
+
return text
|
text/japanese.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from unidecode import unidecode
|
3 |
+
import pyopenjtalk
|
4 |
+
|
5 |
+
|
6 |
+
# Regular expression matching Japanese without punctuation marks:
|
7 |
+
_japanese_characters = re.compile(
|
8 |
+
r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
9 |
+
|
10 |
+
# Regular expression matching non-Japanese characters or punctuation marks:
|
11 |
+
_japanese_marks = re.compile(
|
12 |
+
r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
|
13 |
+
|
14 |
+
# List of (symbol, Japanese) pairs for marks:
|
15 |
+
_symbols_to_japanese = [(re.compile('%s' % x[0]), x[1]) for x in [
|
16 |
+
('%', 'パーセント')
|
17 |
+
]]
|
18 |
+
|
19 |
+
# List of (romaji, ipa) pairs for marks:
|
20 |
+
_romaji_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
|
21 |
+
('ts', 'ʦ'),
|
22 |
+
('u', 'ɯ'),
|
23 |
+
('j', 'ʥ'),
|
24 |
+
('y', 'j'),
|
25 |
+
('ni', 'n^i'),
|
26 |
+
('nj', 'n^'),
|
27 |
+
('hi', 'çi'),
|
28 |
+
('hj', 'ç'),
|
29 |
+
('f', 'ɸ'),
|
30 |
+
('I', 'i*'),
|
31 |
+
('U', 'ɯ*'),
|
32 |
+
('r', 'ɾ')
|
33 |
+
]]
|
34 |
+
|
35 |
+
# List of (romaji, ipa2) pairs for marks:
|
36 |
+
_romaji_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
|
37 |
+
('u', 'ɯ'),
|
38 |
+
('ʧ', 'tʃ'),
|
39 |
+
('j', 'dʑ'),
|
40 |
+
('y', 'j'),
|
41 |
+
('ni', 'n^i'),
|
42 |
+
('nj', 'n^'),
|
43 |
+
('hi', 'çi'),
|
44 |
+
('hj', 'ç'),
|
45 |
+
('f', 'ɸ'),
|
46 |
+
('I', 'i*'),
|
47 |
+
('U', 'ɯ*'),
|
48 |
+
('r', 'ɾ')
|
49 |
+
]]
|
50 |
+
|
51 |
+
# List of (consonant, sokuon) pairs:
|
52 |
+
_real_sokuon = [(re.compile('%s' % x[0]), x[1]) for x in [
|
53 |
+
(r'Q([↑↓]*[kg])', r'k#\1'),
|
54 |
+
(r'Q([↑↓]*[tdjʧ])', r't#\1'),
|
55 |
+
(r'Q([↑↓]*[sʃ])', r's\1'),
|
56 |
+
(r'Q([↑↓]*[pb])', r'p#\1')
|
57 |
+
]]
|
58 |
+
|
59 |
+
# List of (consonant, hatsuon) pairs:
|
60 |
+
_real_hatsuon = [(re.compile('%s' % x[0]), x[1]) for x in [
|
61 |
+
(r'N([↑↓]*[pbm])', r'm\1'),
|
62 |
+
(r'N([↑↓]*[ʧʥj])', r'n^\1'),
|
63 |
+
(r'N([↑↓]*[tdn])', r'n\1'),
|
64 |
+
(r'N([↑↓]*[kg])', r'ŋ\1')
|
65 |
+
]]
|
66 |
+
|
67 |
+
|
68 |
+
def symbols_to_japanese(text):
|
69 |
+
for regex, replacement in _symbols_to_japanese:
|
70 |
+
text = re.sub(regex, replacement, text)
|
71 |
+
return text
|
72 |
+
|
73 |
+
|
74 |
+
def japanese_to_romaji_with_accent(text):
|
75 |
+
'''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html'''
|
76 |
+
text = symbols_to_japanese(text)
|
77 |
+
sentences = re.split(_japanese_marks, text)
|
78 |
+
marks = re.findall(_japanese_marks, text)
|
79 |
+
text = ''
|
80 |
+
for i, sentence in enumerate(sentences):
|
81 |
+
if re.match(_japanese_characters, sentence):
|
82 |
+
if text != '':
|
83 |
+
text += ' '
|
84 |
+
labels = pyopenjtalk.extract_fullcontext(sentence)
|
85 |
+
for n, label in enumerate(labels):
|
86 |
+
phoneme = re.search(r'\-([^\+]*)\+', label).group(1)
|
87 |
+
if phoneme not in ['sil', 'pau']:
|
88 |
+
text += phoneme.replace('ch', 'ʧ').replace('sh',
|
89 |
+
'ʃ').replace('cl', 'Q')
|
90 |
+
else:
|
91 |
+
continue
|
92 |
+
# n_moras = int(re.search(r'/F:(\d+)_', label).group(1))
|
93 |
+
a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1))
|
94 |
+
a2 = int(re.search(r"\+(\d+)\+", label).group(1))
|
95 |
+
a3 = int(re.search(r"\+(\d+)/", label).group(1))
|
96 |
+
if re.search(r'\-([^\+]*)\+', labels[n + 1]).group(1) in ['sil', 'pau']:
|
97 |
+
a2_next = -1
|
98 |
+
else:
|
99 |
+
a2_next = int(
|
100 |
+
re.search(r"\+(\d+)\+", labels[n + 1]).group(1))
|
101 |
+
# Accent phrase boundary
|
102 |
+
if a3 == 1 and a2_next == 1:
|
103 |
+
text += ' '
|
104 |
+
# Falling
|
105 |
+
elif a1 == 0 and a2_next == a2 + 1:
|
106 |
+
text += '↓'
|
107 |
+
# Rising
|
108 |
+
elif a2 == 1 and a2_next == 2:
|
109 |
+
text += '↑'
|
110 |
+
if i < len(marks):
|
111 |
+
text += unidecode(marks[i]).replace(' ', '')
|
112 |
+
return text
|
113 |
+
|
114 |
+
|
115 |
+
def get_real_sokuon(text):
|
116 |
+
for regex, replacement in _real_sokuon:
|
117 |
+
text = re.sub(regex, replacement, text)
|
118 |
+
return text
|
119 |
+
|
120 |
+
|
121 |
+
def get_real_hatsuon(text):
|
122 |
+
for regex, replacement in _real_hatsuon:
|
123 |
+
text = re.sub(regex, replacement, text)
|
124 |
+
return text
|
125 |
+
|
126 |
+
|
127 |
+
def japanese_to_ipa(text):
|
128 |
+
text = japanese_to_romaji_with_accent(text).replace('...', '…')
|
129 |
+
text = re.sub(
|
130 |
+
r'([aiueo])\1+', lambda x: x.group(0)[0]+'ː'*(len(x.group(0))-1), text)
|
131 |
+
text = get_real_sokuon(text)
|
132 |
+
text = get_real_hatsuon(text)
|
133 |
+
for regex, replacement in _romaji_to_ipa:
|
134 |
+
text = re.sub(regex, replacement, text)
|
135 |
+
return text
|
136 |
+
|
137 |
+
|
138 |
+
def japanese_to_ipa2(text):
|
139 |
+
text = japanese_to_romaji_with_accent(text).replace('...', '…')
|
140 |
+
text = get_real_sokuon(text)
|
141 |
+
text = get_real_hatsuon(text)
|
142 |
+
for regex, replacement in _romaji_to_ipa2:
|
143 |
+
text = re.sub(regex, replacement, text)
|
144 |
+
return text
|
145 |
+
|
146 |
+
|
147 |
+
def japanese_to_ipa3(text):
|
148 |
+
text = japanese_to_ipa2(text).replace('n^', 'ȵ').replace(
|
149 |
+
'ʃ', 'ɕ').replace('*', '\u0325').replace('#', '\u031a')
|
150 |
+
text = re.sub(
|
151 |
+
r'([aiɯeo])\1+', lambda x: x.group(0)[0]+'ː'*(len(x.group(0))-1), text)
|
152 |
+
text = re.sub(r'((?:^|\s)(?:ts|tɕ|[kpt]))', r'\1ʰ', text)
|
153 |
+
return text
|
text/korean.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from jamo import h2j, j2hcj
|
3 |
+
import ko_pron
|
4 |
+
|
5 |
+
|
6 |
+
# This is a list of Korean classifiers preceded by pure Korean numerals.
|
7 |
+
_korean_classifiers = '군데 권 개 그루 닢 대 두 마리 모 모금 뭇 발 발짝 방 번 벌 보루 살 수 술 시 쌈 움큼 정 짝 채 척 첩 축 켤레 톨 통'
|
8 |
+
|
9 |
+
# List of (hangul, hangul divided) pairs:
|
10 |
+
_hangul_divided = [(re.compile('%s' % x[0]), x[1]) for x in [
|
11 |
+
('ㄳ', 'ㄱㅅ'),
|
12 |
+
('ㄵ', 'ㄴㅈ'),
|
13 |
+
('ㄶ', 'ㄴㅎ'),
|
14 |
+
('ㄺ', 'ㄹㄱ'),
|
15 |
+
('ㄻ', 'ㄹㅁ'),
|
16 |
+
('ㄼ', 'ㄹㅂ'),
|
17 |
+
('ㄽ', 'ㄹㅅ'),
|
18 |
+
('ㄾ', 'ㄹㅌ'),
|
19 |
+
('ㄿ', 'ㄹㅍ'),
|
20 |
+
('ㅀ', 'ㄹㅎ'),
|
21 |
+
('ㅄ', 'ㅂㅅ'),
|
22 |
+
('ㅘ', 'ㅗㅏ'),
|
23 |
+
('ㅙ', 'ㅗㅐ'),
|
24 |
+
('ㅚ', 'ㅗㅣ'),
|
25 |
+
('ㅝ', 'ㅜㅓ'),
|
26 |
+
('ㅞ', 'ㅜㅔ'),
|
27 |
+
('ㅟ', 'ㅜㅣ'),
|
28 |
+
('ㅢ', 'ㅡㅣ'),
|
29 |
+
('ㅑ', 'ㅣㅏ'),
|
30 |
+
('ㅒ', 'ㅣㅐ'),
|
31 |
+
('ㅕ', 'ㅣㅓ'),
|
32 |
+
('ㅖ', 'ㅣㅔ'),
|
33 |
+
('ㅛ', 'ㅣㅗ'),
|
34 |
+
('ㅠ', 'ㅣㅜ')
|
35 |
+
]]
|
36 |
+
|
37 |
+
# List of (Latin alphabet, hangul) pairs:
|
38 |
+
_latin_to_hangul = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
39 |
+
('a', '에이'),
|
40 |
+
('b', '비'),
|
41 |
+
('c', '시'),
|
42 |
+
('d', '디'),
|
43 |
+
('e', '이'),
|
44 |
+
('f', '에프'),
|
45 |
+
('g', '지'),
|
46 |
+
('h', '에이치'),
|
47 |
+
('i', '아이'),
|
48 |
+
('j', '제이'),
|
49 |
+
('k', '케이'),
|
50 |
+
('l', '엘'),
|
51 |
+
('m', '엠'),
|
52 |
+
('n', '엔'),
|
53 |
+
('o', '오'),
|
54 |
+
('p', '피'),
|
55 |
+
('q', '큐'),
|
56 |
+
('r', '아르'),
|
57 |
+
('s', '에스'),
|
58 |
+
('t', '티'),
|
59 |
+
('u', '유'),
|
60 |
+
('v', '브이'),
|
61 |
+
('w', '더블유'),
|
62 |
+
('x', '엑스'),
|
63 |
+
('y', '와이'),
|
64 |
+
('z', '제트')
|
65 |
+
]]
|
66 |
+
|
67 |
+
# List of (ipa, lazy ipa) pairs:
|
68 |
+
_ipa_to_lazy_ipa = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
69 |
+
('t͡ɕ','ʧ'),
|
70 |
+
('d͡ʑ','ʥ'),
|
71 |
+
('ɲ','n^'),
|
72 |
+
('ɕ','ʃ'),
|
73 |
+
('ʷ','w'),
|
74 |
+
('ɭ','l`'),
|
75 |
+
('ʎ','ɾ'),
|
76 |
+
('ɣ','ŋ'),
|
77 |
+
('ɰ','ɯ'),
|
78 |
+
('ʝ','j'),
|
79 |
+
('ʌ','ə'),
|
80 |
+
('ɡ','g'),
|
81 |
+
('\u031a','#'),
|
82 |
+
('\u0348','='),
|
83 |
+
('\u031e',''),
|
84 |
+
('\u0320',''),
|
85 |
+
('\u0339','')
|
86 |
+
]]
|
87 |
+
|
88 |
+
|
89 |
+
def latin_to_hangul(text):
|
90 |
+
for regex, replacement in _latin_to_hangul:
|
91 |
+
text = re.sub(regex, replacement, text)
|
92 |
+
return text
|
93 |
+
|
94 |
+
|
95 |
+
def divide_hangul(text):
|
96 |
+
text = j2hcj(h2j(text))
|
97 |
+
for regex, replacement in _hangul_divided:
|
98 |
+
text = re.sub(regex, replacement, text)
|
99 |
+
return text
|
100 |
+
|
101 |
+
|
102 |
+
def hangul_number(num, sino=True):
|
103 |
+
'''Reference https://github.com/Kyubyong/g2pK'''
|
104 |
+
num = re.sub(',', '', num)
|
105 |
+
|
106 |
+
if num == '0':
|
107 |
+
return '영'
|
108 |
+
if not sino and num == '20':
|
109 |
+
return '스무'
|
110 |
+
|
111 |
+
digits = '123456789'
|
112 |
+
names = '일이삼사오육칠팔구'
|
113 |
+
digit2name = {d: n for d, n in zip(digits, names)}
|
114 |
+
|
115 |
+
modifiers = '한 두 세 네 다섯 여섯 일곱 여덟 아홉'
|
116 |
+
decimals = '열 스물 서른 마흔 쉰 예순 일흔 여든 아흔'
|
117 |
+
digit2mod = {d: mod for d, mod in zip(digits, modifiers.split())}
|
118 |
+
digit2dec = {d: dec for d, dec in zip(digits, decimals.split())}
|
119 |
+
|
120 |
+
spelledout = []
|
121 |
+
for i, digit in enumerate(num):
|
122 |
+
i = len(num) - i - 1
|
123 |
+
if sino:
|
124 |
+
if i == 0:
|
125 |
+
name = digit2name.get(digit, '')
|
126 |
+
elif i == 1:
|
127 |
+
name = digit2name.get(digit, '') + '십'
|
128 |
+
name = name.replace('일십', '십')
|
129 |
+
else:
|
130 |
+
if i == 0:
|
131 |
+
name = digit2mod.get(digit, '')
|
132 |
+
elif i == 1:
|
133 |
+
name = digit2dec.get(digit, '')
|
134 |
+
if digit == '0':
|
135 |
+
if i % 4 == 0:
|
136 |
+
last_three = spelledout[-min(3, len(spelledout)):]
|
137 |
+
if ''.join(last_three) == '':
|
138 |
+
spelledout.append('')
|
139 |
+
continue
|
140 |
+
else:
|
141 |
+
spelledout.append('')
|
142 |
+
continue
|
143 |
+
if i == 2:
|
144 |
+
name = digit2name.get(digit, '') + '백'
|
145 |
+
name = name.replace('일백', '백')
|
146 |
+
elif i == 3:
|
147 |
+
name = digit2name.get(digit, '') + '천'
|
148 |
+
name = name.replace('일천', '천')
|
149 |
+
elif i == 4:
|
150 |
+
name = digit2name.get(digit, '') + '만'
|
151 |
+
name = name.replace('일만', '만')
|
152 |
+
elif i == 5:
|
153 |
+
name = digit2name.get(digit, '') + '십'
|
154 |
+
name = name.replace('일십', '십')
|
155 |
+
elif i == 6:
|
156 |
+
name = digit2name.get(digit, '') + '백'
|
157 |
+
name = name.replace('일백', '백')
|
158 |
+
elif i == 7:
|
159 |
+
name = digit2name.get(digit, '') + '천'
|
160 |
+
name = name.replace('일천', '천')
|
161 |
+
elif i == 8:
|
162 |
+
name = digit2name.get(digit, '') + '억'
|
163 |
+
elif i == 9:
|
164 |
+
name = digit2name.get(digit, '') + '십'
|
165 |
+
elif i == 10:
|
166 |
+
name = digit2name.get(digit, '') + '백'
|
167 |
+
elif i == 11:
|
168 |
+
name = digit2name.get(digit, '') + '천'
|
169 |
+
elif i == 12:
|
170 |
+
name = digit2name.get(digit, '') + '조'
|
171 |
+
elif i == 13:
|
172 |
+
name = digit2name.get(digit, '') + '십'
|
173 |
+
elif i == 14:
|
174 |
+
name = digit2name.get(digit, '') + '백'
|
175 |
+
elif i == 15:
|
176 |
+
name = digit2name.get(digit, '') + '천'
|
177 |
+
spelledout.append(name)
|
178 |
+
return ''.join(elem for elem in spelledout)
|
179 |
+
|
180 |
+
|
181 |
+
def number_to_hangul(text):
|
182 |
+
'''Reference https://github.com/Kyubyong/g2pK'''
|
183 |
+
tokens = set(re.findall(r'(\d[\d,]*)([\uac00-\ud71f]+)', text))
|
184 |
+
for token in tokens:
|
185 |
+
num, classifier = token
|
186 |
+
if classifier[:2] in _korean_classifiers or classifier[0] in _korean_classifiers:
|
187 |
+
spelledout = hangul_number(num, sino=False)
|
188 |
+
else:
|
189 |
+
spelledout = hangul_number(num, sino=True)
|
190 |
+
text = text.replace(f'{num}{classifier}', f'{spelledout}{classifier}')
|
191 |
+
# digit by digit for remaining digits
|
192 |
+
digits = '0123456789'
|
193 |
+
names = '영일이삼사오육칠팔구'
|
194 |
+
for d, n in zip(digits, names):
|
195 |
+
text = text.replace(d, n)
|
196 |
+
return text
|
197 |
+
|
198 |
+
|
199 |
+
def korean_to_lazy_ipa(text):
|
200 |
+
text = latin_to_hangul(text)
|
201 |
+
text = number_to_hangul(text)
|
202 |
+
text=re.sub('[\uac00-\ud7af]+',lambda x:ko_pron.romanise(x.group(0),'ipa'),text).split('] ~ [')[0]
|
203 |
+
for regex, replacement in _ipa_to_lazy_ipa:
|
204 |
+
text = re.sub(regex, replacement, text)
|
205 |
+
return text
|
text/mandarin.py
ADDED
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import re
|
4 |
+
from pypinyin import lazy_pinyin, BOPOMOFO
|
5 |
+
import jieba
|
6 |
+
import cn2an
|
7 |
+
|
8 |
+
|
9 |
+
# List of (Latin alphabet, bopomofo) pairs:
|
10 |
+
_latin_to_bopomofo = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
11 |
+
('a', 'ㄟˉ'),
|
12 |
+
('b', 'ㄅㄧˋ'),
|
13 |
+
('c', 'ㄙㄧˉ'),
|
14 |
+
('d', 'ㄉㄧˋ'),
|
15 |
+
('e', 'ㄧˋ'),
|
16 |
+
('f', 'ㄝˊㄈㄨˋ'),
|
17 |
+
('g', 'ㄐㄧˋ'),
|
18 |
+
('h', 'ㄝˇㄑㄩˋ'),
|
19 |
+
('i', 'ㄞˋ'),
|
20 |
+
('j', 'ㄐㄟˋ'),
|
21 |
+
('k', 'ㄎㄟˋ'),
|
22 |
+
('l', 'ㄝˊㄛˋ'),
|
23 |
+
('m', 'ㄝˊㄇㄨˋ'),
|
24 |
+
('n', 'ㄣˉ'),
|
25 |
+
('o', 'ㄡˉ'),
|
26 |
+
('p', 'ㄆㄧˉ'),
|
27 |
+
('q', 'ㄎㄧㄡˉ'),
|
28 |
+
('r', 'ㄚˋ'),
|
29 |
+
('s', 'ㄝˊㄙˋ'),
|
30 |
+
('t', 'ㄊㄧˋ'),
|
31 |
+
('u', 'ㄧㄡˉ'),
|
32 |
+
('v', 'ㄨㄧˉ'),
|
33 |
+
('w', 'ㄉㄚˋㄅㄨˋㄌㄧㄡˋ'),
|
34 |
+
('x', 'ㄝˉㄎㄨˋㄙˋ'),
|
35 |
+
('y', 'ㄨㄞˋ'),
|
36 |
+
('z', 'ㄗㄟˋ')
|
37 |
+
]]
|
38 |
+
|
39 |
+
# List of (bopomofo, romaji) pairs:
|
40 |
+
_bopomofo_to_romaji = [(re.compile('%s' % x[0]), x[1]) for x in [
|
41 |
+
('ㄅㄛ', 'p⁼wo'),
|
42 |
+
('ㄆㄛ', 'pʰwo'),
|
43 |
+
('ㄇㄛ', 'mwo'),
|
44 |
+
('ㄈㄛ', 'fwo'),
|
45 |
+
('ㄅ', 'p⁼'),
|
46 |
+
('ㄆ', 'pʰ'),
|
47 |
+
('ㄇ', 'm'),
|
48 |
+
('ㄈ', 'f'),
|
49 |
+
('ㄉ', 't⁼'),
|
50 |
+
('ㄊ', 'tʰ'),
|
51 |
+
('ㄋ', 'n'),
|
52 |
+
('ㄌ', 'l'),
|
53 |
+
('ㄍ', 'k⁼'),
|
54 |
+
('ㄎ', 'kʰ'),
|
55 |
+
('ㄏ', 'h'),
|
56 |
+
('ㄐ', 'ʧ⁼'),
|
57 |
+
('ㄑ', 'ʧʰ'),
|
58 |
+
('ㄒ', 'ʃ'),
|
59 |
+
('ㄓ', 'ʦ`⁼'),
|
60 |
+
('ㄔ', 'ʦ`ʰ'),
|
61 |
+
('ㄕ', 's`'),
|
62 |
+
('ㄖ', 'ɹ`'),
|
63 |
+
('ㄗ', 'ʦ⁼'),
|
64 |
+
('ㄘ', 'ʦʰ'),
|
65 |
+
('ㄙ', 's'),
|
66 |
+
('ㄚ', 'a'),
|
67 |
+
('ㄛ', 'o'),
|
68 |
+
('ㄜ', 'ə'),
|
69 |
+
('ㄝ', 'e'),
|
70 |
+
('ㄞ', 'ai'),
|
71 |
+
('ㄟ', 'ei'),
|
72 |
+
('ㄠ', 'au'),
|
73 |
+
('ㄡ', 'ou'),
|
74 |
+
('ㄧㄢ', 'yeNN'),
|
75 |
+
('ㄢ', 'aNN'),
|
76 |
+
('ㄧㄣ', 'iNN'),
|
77 |
+
('ㄣ', 'əNN'),
|
78 |
+
('ㄤ', 'aNg'),
|
79 |
+
('ㄧㄥ', 'iNg'),
|
80 |
+
('ㄨㄥ', 'uNg'),
|
81 |
+
('ㄩㄥ', 'yuNg'),
|
82 |
+
('ㄥ', 'əNg'),
|
83 |
+
('ㄦ', 'əɻ'),
|
84 |
+
('ㄧ', 'i'),
|
85 |
+
('ㄨ', 'u'),
|
86 |
+
('ㄩ', 'ɥ'),
|
87 |
+
('ˉ', '→'),
|
88 |
+
('ˊ', '↑'),
|
89 |
+
('ˇ', '↓↑'),
|
90 |
+
('ˋ', '↓'),
|
91 |
+
('˙', ''),
|
92 |
+
(',', ','),
|
93 |
+
('。', '.'),
|
94 |
+
('!', '!'),
|
95 |
+
('?', '?'),
|
96 |
+
('—', '-')
|
97 |
+
]]
|
98 |
+
|
99 |
+
# List of (romaji, ipa) pairs:
|
100 |
+
_romaji_to_ipa = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
|
101 |
+
('ʃy', 'ʃ'),
|
102 |
+
('ʧʰy', 'ʧʰ'),
|
103 |
+
('ʧ⁼y', 'ʧ⁼'),
|
104 |
+
('NN', 'n'),
|
105 |
+
('Ng', 'ŋ'),
|
106 |
+
('y', 'j'),
|
107 |
+
('h', 'x')
|
108 |
+
]]
|
109 |
+
|
110 |
+
# List of (bopomofo, ipa) pairs:
|
111 |
+
_bopomofo_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
|
112 |
+
('ㄅㄛ', 'p⁼wo'),
|
113 |
+
('ㄆㄛ', 'pʰwo'),
|
114 |
+
('ㄇㄛ', 'mwo'),
|
115 |
+
('ㄈㄛ', 'fwo'),
|
116 |
+
('ㄅ', 'p⁼'),
|
117 |
+
('ㄆ', 'pʰ'),
|
118 |
+
('ㄇ', 'm'),
|
119 |
+
('ㄈ', 'f'),
|
120 |
+
('ㄉ', 't⁼'),
|
121 |
+
('ㄊ', 'tʰ'),
|
122 |
+
('ㄋ', 'n'),
|
123 |
+
('ㄌ', 'l'),
|
124 |
+
('ㄍ', 'k⁼'),
|
125 |
+
('ㄎ', 'kʰ'),
|
126 |
+
('ㄏ', 'x'),
|
127 |
+
('ㄐ', 'tʃ⁼'),
|
128 |
+
('ㄑ', 'tʃʰ'),
|
129 |
+
('ㄒ', 'ʃ'),
|
130 |
+
('ㄓ', 'ts`⁼'),
|
131 |
+
('ㄔ', 'ts`ʰ'),
|
132 |
+
('ㄕ', 's`'),
|
133 |
+
('ㄖ', 'ɹ`'),
|
134 |
+
('ㄗ', 'ts⁼'),
|
135 |
+
('ㄘ', 'tsʰ'),
|
136 |
+
('ㄙ', 's'),
|
137 |
+
('ㄚ', 'a'),
|
138 |
+
('ㄛ', 'o'),
|
139 |
+
('ㄜ', 'ə'),
|
140 |
+
('ㄝ', 'ɛ'),
|
141 |
+
('ㄞ', 'aɪ'),
|
142 |
+
('ㄟ', 'eɪ'),
|
143 |
+
('ㄠ', 'ɑʊ'),
|
144 |
+
('ㄡ', 'oʊ'),
|
145 |
+
('ㄧㄢ', 'jɛn'),
|
146 |
+
('ㄩㄢ', 'ɥæn'),
|
147 |
+
('ㄢ', 'an'),
|
148 |
+
('ㄧㄣ', 'in'),
|
149 |
+
('ㄩㄣ', 'ɥn'),
|
150 |
+
('ㄣ', 'ən'),
|
151 |
+
('ㄤ', 'ɑŋ'),
|
152 |
+
('ㄧㄥ', 'iŋ'),
|
153 |
+
('ㄨㄥ', 'ʊŋ'),
|
154 |
+
('ㄩㄥ', 'jʊŋ'),
|
155 |
+
('ㄥ', 'əŋ'),
|
156 |
+
('ㄦ', 'əɻ'),
|
157 |
+
('ㄧ', 'i'),
|
158 |
+
('ㄨ', 'u'),
|
159 |
+
('ㄩ', 'ɥ'),
|
160 |
+
('ˉ', '→'),
|
161 |
+
('ˊ', '↑'),
|
162 |
+
('ˇ', '↓↑'),
|
163 |
+
('ˋ', '↓'),
|
164 |
+
('˙', ''),
|
165 |
+
(',', ','),
|
166 |
+
('。', '.'),
|
167 |
+
('!', '!'),
|
168 |
+
('?', '?'),
|
169 |
+
('—', '-')
|
170 |
+
]]
|
171 |
+
|
172 |
+
# List of (bopomofo, ipa2) pairs:
|
173 |
+
_bopomofo_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
|
174 |
+
('ㄅㄛ', 'pwo'),
|
175 |
+
('ㄆㄛ', 'pʰwo'),
|
176 |
+
('ㄇㄛ', 'mwo'),
|
177 |
+
('ㄈㄛ', 'fwo'),
|
178 |
+
('ㄅ', 'p'),
|
179 |
+
('ㄆ', 'pʰ'),
|
180 |
+
('ㄇ', 'm'),
|
181 |
+
('ㄈ', 'f'),
|
182 |
+
('ㄉ', 't'),
|
183 |
+
('ㄊ', 'tʰ'),
|
184 |
+
('ㄋ', 'n'),
|
185 |
+
('ㄌ', 'l'),
|
186 |
+
('ㄍ', 'k'),
|
187 |
+
('ㄎ', 'kʰ'),
|
188 |
+
('ㄏ', 'h'),
|
189 |
+
('ㄐ', 'tɕ'),
|
190 |
+
('ㄑ', 'tɕʰ'),
|
191 |
+
('ㄒ', 'ɕ'),
|
192 |
+
('ㄓ', 'tʂ'),
|
193 |
+
('ㄔ', 'tʂʰ'),
|
194 |
+
('ㄕ', 'ʂ'),
|
195 |
+
('ㄖ', 'ɻ'),
|
196 |
+
('ㄗ', 'ts'),
|
197 |
+
('ㄘ', 'tsʰ'),
|
198 |
+
('ㄙ', 's'),
|
199 |
+
('ㄚ', 'a'),
|
200 |
+
('ㄛ', 'o'),
|
201 |
+
('ㄜ', 'ɤ'),
|
202 |
+
('ㄝ', 'ɛ'),
|
203 |
+
('ㄞ', 'aɪ'),
|
204 |
+
('ㄟ', 'eɪ'),
|
205 |
+
('ㄠ', 'ɑʊ'),
|
206 |
+
('ㄡ', 'oʊ'),
|
207 |
+
('ㄧㄢ', 'jɛn'),
|
208 |
+
('ㄩㄢ', 'yæn'),
|
209 |
+
('ㄢ', 'an'),
|
210 |
+
('ㄧㄣ', 'in'),
|
211 |
+
('ㄩㄣ', 'yn'),
|
212 |
+
('ㄣ', 'ən'),
|
213 |
+
('ㄤ', 'ɑŋ'),
|
214 |
+
('ㄧㄥ', 'iŋ'),
|
215 |
+
('ㄨㄥ', 'ʊŋ'),
|
216 |
+
('ㄩㄥ', 'jʊŋ'),
|
217 |
+
('ㄥ', 'ɤŋ'),
|
218 |
+
('ㄦ', 'əɻ'),
|
219 |
+
('ㄧ', 'i'),
|
220 |
+
('ㄨ', 'u'),
|
221 |
+
('ㄩ', 'y'),
|
222 |
+
('ˉ', '˥'),
|
223 |
+
('ˊ', '˧˥'),
|
224 |
+
('ˇ', '˨˩˦'),
|
225 |
+
('ˋ', '˥˩'),
|
226 |
+
('˙', ''),
|
227 |
+
(',', ','),
|
228 |
+
('。', '.'),
|
229 |
+
('!', '!'),
|
230 |
+
('?', '?'),
|
231 |
+
('—', '-')
|
232 |
+
]]
|
233 |
+
|
234 |
+
|
235 |
+
def number_to_chinese(text):
|
236 |
+
numbers = re.findall(r'\d+(?:\.?\d+)?', text)
|
237 |
+
for number in numbers:
|
238 |
+
text = text.replace(number, cn2an.an2cn(number), 1)
|
239 |
+
return text
|
240 |
+
|
241 |
+
|
242 |
+
def chinese_to_bopomofo(text, taiwanese=False):
|
243 |
+
text = text.replace('、', ',').replace(';', ',').replace(':', ',')
|
244 |
+
words = jieba.lcut(text, cut_all=False)
|
245 |
+
text = ''
|
246 |
+
for word in words:
|
247 |
+
bopomofos = lazy_pinyin(word, BOPOMOFO)
|
248 |
+
if not re.search('[\u4e00-\u9fff]', word):
|
249 |
+
text += word
|
250 |
+
continue
|
251 |
+
for i in range(len(bopomofos)):
|
252 |
+
bopomofos[i] = re.sub(r'([\u3105-\u3129])$', r'\1ˉ', bopomofos[i])
|
253 |
+
if text != '':
|
254 |
+
text += ' '
|
255 |
+
if taiwanese:
|
256 |
+
text += '#'+'#'.join(bopomofos)
|
257 |
+
else:
|
258 |
+
text += ''.join(bopomofos)
|
259 |
+
return text
|
260 |
+
|
261 |
+
|
262 |
+
def latin_to_bopomofo(text):
|
263 |
+
for regex, replacement in _latin_to_bopomofo:
|
264 |
+
text = re.sub(regex, replacement, text)
|
265 |
+
return text
|
266 |
+
|
267 |
+
|
268 |
+
def bopomofo_to_romaji(text):
|
269 |
+
for regex, replacement in _bopomofo_to_romaji:
|
270 |
+
text = re.sub(regex, replacement, text)
|
271 |
+
return text
|
272 |
+
|
273 |
+
|
274 |
+
def bopomofo_to_ipa(text):
|
275 |
+
for regex, replacement in _bopomofo_to_ipa:
|
276 |
+
text = re.sub(regex, replacement, text)
|
277 |
+
return text
|
278 |
+
|
279 |
+
|
280 |
+
def bopomofo_to_ipa2(text):
|
281 |
+
for regex, replacement in _bopomofo_to_ipa2:
|
282 |
+
text = re.sub(regex, replacement, text)
|
283 |
+
return text
|
284 |
+
|
285 |
+
|
286 |
+
def chinese_to_romaji(text):
|
287 |
+
text = number_to_chinese(text)
|
288 |
+
text = chinese_to_bopomofo(text)
|
289 |
+
text = latin_to_bopomofo(text)
|
290 |
+
text = bopomofo_to_romaji(text)
|
291 |
+
text = re.sub('i([aoe])', r'y\1', text)
|
292 |
+
text = re.sub('u([aoəe])', r'w\1', text)
|
293 |
+
text = re.sub('([ʦsɹ]`[⁼ʰ]?)([→↓↑ ]+|$)',
|
294 |
+
r'\1ɹ`\2', text).replace('ɻ', 'ɹ`')
|
295 |
+
text = re.sub('([ʦs][⁼ʰ]?)([→↓↑ ]+|$)', r'\1ɹ\2', text)
|
296 |
+
return text
|
297 |
+
|
298 |
+
|
299 |
+
def chinese_to_lazy_ipa(text):
|
300 |
+
text = chinese_to_romaji(text)
|
301 |
+
for regex, replacement in _romaji_to_ipa:
|
302 |
+
text = re.sub(regex, replacement, text)
|
303 |
+
return text
|
304 |
+
|
305 |
+
|
306 |
+
def chinese_to_ipa(text):
|
307 |
+
text = number_to_chinese(text)
|
308 |
+
text = chinese_to_bopomofo(text)
|
309 |
+
text = latin_to_bopomofo(text)
|
310 |
+
text = bopomofo_to_ipa(text)
|
311 |
+
text = re.sub('i([aoe])', r'j\1', text)
|
312 |
+
text = re.sub('u([aoəe])', r'w\1', text)
|
313 |
+
text = re.sub('([sɹ]`[⁼ʰ]?)([→↓↑ ]+|$)',
|
314 |
+
r'\1ɹ`\2', text).replace('ɻ', 'ɹ`')
|
315 |
+
text = re.sub('([s][⁼ʰ]?)([→↓↑ ]+|$)', r'\1ɹ\2', text)
|
316 |
+
return text
|
317 |
+
|
318 |
+
|
319 |
+
def chinese_to_ipa2(text, taiwanese=False):
|
320 |
+
text = number_to_chinese(text)
|
321 |
+
text = chinese_to_bopomofo(text, taiwanese)
|
322 |
+
text = latin_to_bopomofo(text)
|
323 |
+
text = bopomofo_to_ipa2(text)
|
324 |
+
text = re.sub(r'i([aoe])', r'j\1', text)
|
325 |
+
text = re.sub(r'u([aoəe])', r'w\1', text)
|
326 |
+
text = re.sub(r'([ʂɹ]ʰ?)([˩˨˧˦˥ ]+|$)', r'\1ʅ\2', text)
|
327 |
+
text = re.sub(r'(sʰ?)([˩˨˧˦˥ ]+|$)', r'\1ɿ\2', text)
|
328 |
+
return text
|
text/sanskrit.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from indic_transliteration import sanscript
|
3 |
+
|
4 |
+
|
5 |
+
# List of (iast, ipa) pairs:
|
6 |
+
_iast_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
|
7 |
+
('a', 'ə'),
|
8 |
+
('ā', 'aː'),
|
9 |
+
('ī', 'iː'),
|
10 |
+
('ū', 'uː'),
|
11 |
+
('ṛ', 'ɹ`'),
|
12 |
+
('ṝ', 'ɹ`ː'),
|
13 |
+
('ḷ', 'l`'),
|
14 |
+
('ḹ', 'l`ː'),
|
15 |
+
('e', 'eː'),
|
16 |
+
('o', 'oː'),
|
17 |
+
('k', 'k⁼'),
|
18 |
+
('k⁼h', 'kʰ'),
|
19 |
+
('g', 'g⁼'),
|
20 |
+
('g⁼h', 'gʰ'),
|
21 |
+
('ṅ', 'ŋ'),
|
22 |
+
('c', 'ʧ⁼'),
|
23 |
+
('ʧ⁼h', 'ʧʰ'),
|
24 |
+
('j', 'ʥ⁼'),
|
25 |
+
('ʥ⁼h', 'ʥʰ'),
|
26 |
+
('ñ', 'n^'),
|
27 |
+
('ṭ', 't`⁼'),
|
28 |
+
('t`⁼h', 't`ʰ'),
|
29 |
+
('ḍ', 'd`⁼'),
|
30 |
+
('d`⁼h', 'd`ʰ'),
|
31 |
+
('ṇ', 'n`'),
|
32 |
+
('t', 't⁼'),
|
33 |
+
('t⁼h', 'tʰ'),
|
34 |
+
('d', 'd⁼'),
|
35 |
+
('d⁼h', 'dʰ'),
|
36 |
+
('p', 'p⁼'),
|
37 |
+
('p⁼h', 'pʰ'),
|
38 |
+
('b', 'b⁼'),
|
39 |
+
('b⁼h', 'bʰ'),
|
40 |
+
('y', 'j'),
|
41 |
+
('ś', 'ʃ'),
|
42 |
+
('ṣ', 's`'),
|
43 |
+
('r', 'ɾ'),
|
44 |
+
('l̤', 'l`'),
|
45 |
+
('h', 'ɦ'),
|
46 |
+
("'", ''),
|
47 |
+
('~', '^'),
|
48 |
+
('ṃ', '^')
|
49 |
+
]]
|
50 |
+
|
51 |
+
|
52 |
+
def devanagari_to_ipa(text):
|
53 |
+
text = text.replace('ॐ', 'ओम्')
|
54 |
+
text = re.sub(r'\s*।\s*$', '.', text)
|
55 |
+
text = re.sub(r'\s*।\s*', ', ', text)
|
56 |
+
text = re.sub(r'\s*॥', '.', text)
|
57 |
+
text = sanscript.transliterate(text, sanscript.DEVANAGARI, sanscript.IAST)
|
58 |
+
for regex, replacement in _iast_to_ipa:
|
59 |
+
text = re.sub(regex, replacement, text)
|
60 |
+
text = re.sub('(.)[`ː]*ḥ', lambda x: x.group(0)
|
61 |
+
[:-1]+'h'+x.group(1)+'*', text)
|
62 |
+
return text
|
transforms.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
8 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
9 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
10 |
+
|
11 |
+
|
12 |
+
def piecewise_rational_quadratic_transform(inputs,
|
13 |
+
unnormalized_widths,
|
14 |
+
unnormalized_heights,
|
15 |
+
unnormalized_derivatives,
|
16 |
+
inverse=False,
|
17 |
+
tails=None,
|
18 |
+
tail_bound=1.,
|
19 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
20 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
21 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
22 |
+
|
23 |
+
if tails is None:
|
24 |
+
spline_fn = rational_quadratic_spline
|
25 |
+
spline_kwargs = {}
|
26 |
+
else:
|
27 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
28 |
+
spline_kwargs = {
|
29 |
+
'tails': tails,
|
30 |
+
'tail_bound': tail_bound
|
31 |
+
}
|
32 |
+
|
33 |
+
outputs, logabsdet = spline_fn(
|
34 |
+
inputs=inputs,
|
35 |
+
unnormalized_widths=unnormalized_widths,
|
36 |
+
unnormalized_heights=unnormalized_heights,
|
37 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
38 |
+
inverse=inverse,
|
39 |
+
min_bin_width=min_bin_width,
|
40 |
+
min_bin_height=min_bin_height,
|
41 |
+
min_derivative=min_derivative,
|
42 |
+
**spline_kwargs
|
43 |
+
)
|
44 |
+
return outputs, logabsdet
|
45 |
+
|
46 |
+
|
47 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
48 |
+
bin_locations[..., -1] += eps
|
49 |
+
return torch.sum(
|
50 |
+
inputs[..., None] >= bin_locations,
|
51 |
+
dim=-1
|
52 |
+
) - 1
|
53 |
+
|
54 |
+
|
55 |
+
def unconstrained_rational_quadratic_spline(inputs,
|
56 |
+
unnormalized_widths,
|
57 |
+
unnormalized_heights,
|
58 |
+
unnormalized_derivatives,
|
59 |
+
inverse=False,
|
60 |
+
tails='linear',
|
61 |
+
tail_bound=1.,
|
62 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
63 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
64 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
65 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
66 |
+
outside_interval_mask = ~inside_interval_mask
|
67 |
+
|
68 |
+
outputs = torch.zeros_like(inputs)
|
69 |
+
logabsdet = torch.zeros_like(inputs)
|
70 |
+
|
71 |
+
if tails == 'linear':
|
72 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
73 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
74 |
+
unnormalized_derivatives[..., 0] = constant
|
75 |
+
unnormalized_derivatives[..., -1] = constant
|
76 |
+
|
77 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
78 |
+
logabsdet[outside_interval_mask] = 0
|
79 |
+
else:
|
80 |
+
raise RuntimeError('{} tails are not implemented.'.format(tails))
|
81 |
+
|
82 |
+
outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
|
83 |
+
inputs=inputs[inside_interval_mask],
|
84 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
85 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
86 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
87 |
+
inverse=inverse,
|
88 |
+
left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
|
89 |
+
min_bin_width=min_bin_width,
|
90 |
+
min_bin_height=min_bin_height,
|
91 |
+
min_derivative=min_derivative
|
92 |
+
)
|
93 |
+
|
94 |
+
return outputs, logabsdet
|
95 |
+
|
96 |
+
def rational_quadratic_spline(inputs,
|
97 |
+
unnormalized_widths,
|
98 |
+
unnormalized_heights,
|
99 |
+
unnormalized_derivatives,
|
100 |
+
inverse=False,
|
101 |
+
left=0., right=1., bottom=0., top=1.,
|
102 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
103 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
104 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
105 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
106 |
+
raise ValueError('Input to a transform is not within its domain')
|
107 |
+
|
108 |
+
num_bins = unnormalized_widths.shape[-1]
|
109 |
+
|
110 |
+
if min_bin_width * num_bins > 1.0:
|
111 |
+
raise ValueError('Minimal bin width too large for the number of bins')
|
112 |
+
if min_bin_height * num_bins > 1.0:
|
113 |
+
raise ValueError('Minimal bin height too large for the number of bins')
|
114 |
+
|
115 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
116 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
117 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
118 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
119 |
+
cumwidths = (right - left) * cumwidths + left
|
120 |
+
cumwidths[..., 0] = left
|
121 |
+
cumwidths[..., -1] = right
|
122 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
123 |
+
|
124 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
125 |
+
|
126 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
127 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
128 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
129 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
130 |
+
cumheights = (top - bottom) * cumheights + bottom
|
131 |
+
cumheights[..., 0] = bottom
|
132 |
+
cumheights[..., -1] = top
|
133 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
134 |
+
|
135 |
+
if inverse:
|
136 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
137 |
+
else:
|
138 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
139 |
+
|
140 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
141 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
142 |
+
|
143 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
144 |
+
delta = heights / widths
|
145 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
146 |
+
|
147 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
148 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
149 |
+
|
150 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
151 |
+
|
152 |
+
if inverse:
|
153 |
+
a = (((inputs - input_cumheights) * (input_derivatives
|
154 |
+
+ input_derivatives_plus_one
|
155 |
+
- 2 * input_delta)
|
156 |
+
+ input_heights * (input_delta - input_derivatives)))
|
157 |
+
b = (input_heights * input_derivatives
|
158 |
+
- (inputs - input_cumheights) * (input_derivatives
|
159 |
+
+ input_derivatives_plus_one
|
160 |
+
- 2 * input_delta))
|
161 |
+
c = - input_delta * (inputs - input_cumheights)
|
162 |
+
|
163 |
+
discriminant = b.pow(2) - 4 * a * c
|
164 |
+
assert (discriminant >= 0).all()
|
165 |
+
|
166 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
167 |
+
outputs = root * input_bin_widths + input_cumwidths
|
168 |
+
|
169 |
+
theta_one_minus_theta = root * (1 - root)
|
170 |
+
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
171 |
+
* theta_one_minus_theta)
|
172 |
+
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
|
173 |
+
+ 2 * input_delta * theta_one_minus_theta
|
174 |
+
+ input_derivatives * (1 - root).pow(2))
|
175 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
176 |
+
|
177 |
+
return outputs, -logabsdet
|
178 |
+
else:
|
179 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
180 |
+
theta_one_minus_theta = theta * (1 - theta)
|
181 |
+
|
182 |
+
numerator = input_heights * (input_delta * theta.pow(2)
|
183 |
+
+ input_derivatives * theta_one_minus_theta)
|
184 |
+
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
185 |
+
* theta_one_minus_theta)
|
186 |
+
outputs = input_cumheights + numerator / denominator
|
187 |
+
|
188 |
+
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
|
189 |
+
+ 2 * input_delta * theta_one_minus_theta
|
190 |
+
+ input_derivatives * (1 - theta).pow(2))
|
191 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
192 |
+
|
193 |
+
return outputs, logabsdet
|
utils.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from json import loads
|
3 |
+
from torch import load, FloatTensor
|
4 |
+
from numpy import float32
|
5 |
+
import librosa
|
6 |
+
|
7 |
+
|
8 |
+
class HParams():
|
9 |
+
def __init__(self, **kwargs):
|
10 |
+
for k, v in kwargs.items():
|
11 |
+
if type(v) == dict:
|
12 |
+
v = HParams(**v)
|
13 |
+
self[k] = v
|
14 |
+
|
15 |
+
def keys(self):
|
16 |
+
return self.__dict__.keys()
|
17 |
+
|
18 |
+
def items(self):
|
19 |
+
return self.__dict__.items()
|
20 |
+
|
21 |
+
def values(self):
|
22 |
+
return self.__dict__.values()
|
23 |
+
|
24 |
+
def __len__(self):
|
25 |
+
return len(self.__dict__)
|
26 |
+
|
27 |
+
def __getitem__(self, key):
|
28 |
+
return getattr(self, key)
|
29 |
+
|
30 |
+
def __setitem__(self, key, value):
|
31 |
+
return setattr(self, key, value)
|
32 |
+
|
33 |
+
def __contains__(self, key):
|
34 |
+
return key in self.__dict__
|
35 |
+
|
36 |
+
def __repr__(self):
|
37 |
+
return self.__dict__.__repr__()
|
38 |
+
|
39 |
+
|
40 |
+
def load_checkpoint(checkpoint_path, model):
|
41 |
+
checkpoint_dict = load(checkpoint_path, map_location='cpu')
|
42 |
+
iteration = checkpoint_dict['iteration']
|
43 |
+
saved_state_dict = checkpoint_dict['model']
|
44 |
+
if hasattr(model, 'module'):
|
45 |
+
state_dict = model.module.state_dict()
|
46 |
+
else:
|
47 |
+
state_dict = model.state_dict()
|
48 |
+
new_state_dict = {}
|
49 |
+
for k, v in state_dict.items():
|
50 |
+
try:
|
51 |
+
new_state_dict[k] = saved_state_dict[k]
|
52 |
+
except:
|
53 |
+
logging.info("%s is not in the checkpoint" % k)
|
54 |
+
new_state_dict[k] = v
|
55 |
+
pass
|
56 |
+
if hasattr(model, 'module'):
|
57 |
+
model.module.load_state_dict(new_state_dict)
|
58 |
+
else:
|
59 |
+
model.load_state_dict(new_state_dict)
|
60 |
+
logging.info("Loaded checkpoint '{}' (iteration {})".format(
|
61 |
+
checkpoint_path, iteration))
|
62 |
+
return
|
63 |
+
|
64 |
+
|
65 |
+
def get_hparams_from_file(config_path):
|
66 |
+
with open(config_path, "r") as f:
|
67 |
+
data = f.read()
|
68 |
+
config = loads(data)
|
69 |
+
|
70 |
+
hparams = HParams(**config)
|
71 |
+
return hparams
|
72 |
+
|
73 |
+
|
74 |
+
def load_audio_to_torch(full_path, target_sampling_rate):
|
75 |
+
audio, sampling_rate = librosa.load(full_path, sr=target_sampling_rate, mono=True)
|
76 |
+
return FloatTensor(audio.astype(float32))
|