Mahiruoshi
commited on
Commit
•
d94bbcb
1
Parent(s):
6379bc4
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import logging
|
|
2 |
logging.getLogger('numba').setLevel(logging.WARNING)
|
3 |
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
4 |
logging.getLogger('urllib3').setLevel(logging.WARNING)
|
5 |
-
import
|
6 |
import re
|
7 |
import numpy as np
|
8 |
import IPython.display as ipd
|
@@ -15,251 +15,97 @@ import gradio as gr
|
|
15 |
import time
|
16 |
import datetime
|
17 |
import os
|
18 |
-
import
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
self.lan = ["中文","日文","自动","手动"]
|
23 |
-
self.idols = ["c1","c2","高咲侑","歩夢","かすみ","しずく","果林","愛","彼方","せつ菜","璃奈","栞子","エマ","ランジュ","ミア","華恋","まひる","なな","クロディーヌ","ひかり",'純那',"香子","真矢","双葉","ミチル","メイファン","やちよ","晶","いちえ","ゆゆ子","塁","珠緒","あるる","ララフィン","美空","静羽","あるる"]
|
24 |
-
self.modelPaths = []
|
25 |
-
for root,dirs,files in os.walk("checkpoints"):
|
26 |
-
for dir in dirs:
|
27 |
-
self.modelPaths.append(dir)
|
28 |
-
with gr.Blocks() as self.Vits:
|
29 |
-
gr.Markdown(
|
30 |
-
"## <center> Lovelive虹团中日双语VITS\n"
|
31 |
-
"### <center> 请不要生成会对个人以及企划造成侵害的内容\n"
|
32 |
-
"<div align='center'>目前有标贝普通话版,去标贝版,少歌模型还是大饼状态</div>"
|
33 |
-
'<div align="center"><a>参数说明:由于爱抖露们过于有感情,合成日语时建议将噪声比例调节至0.2-0.3区间,噪声偏差对应着每个字之间的间隔,对普通话影响较大,duration代表整体语速</div>'
|
34 |
-
'<div align="center"><a>合成前请先选择模型,否则第一次合成不一定成功。长段落/小说合成建议colab或本地运行</div>')
|
35 |
-
with gr.Tab("TTS合成"):
|
36 |
-
with gr.Row():
|
37 |
-
with gr.Column():
|
38 |
-
with gr.Row():
|
39 |
-
with gr.Column():
|
40 |
-
input1 = gr.TextArea(label="Text", value="为什么你会那么熟练啊?你和雪菜亲过多少次了")
|
41 |
-
input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True)
|
42 |
-
input3 = gr.Dropdown(label="Speaker", choices=self.idols, value="歩夢", interactive=True)
|
43 |
-
btnVC = gr.Button("Submit")
|
44 |
-
with gr.Column():
|
45 |
-
input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.267)
|
46 |
-
input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.7)
|
47 |
-
input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
|
48 |
-
output1 = gr.Audio(label="采样率22050")
|
49 |
-
btnVC.click(self.infer, inputs=[input1, input2, input3, input4, input5, input6], outputs=[output1])
|
50 |
-
with gr.Tab("选择模型"):
|
51 |
-
with gr.Column():
|
52 |
-
modelstrs = gr.Dropdown(label = "模型", choices = self.modelPaths, value = self.modelPaths[0], type = "value")
|
53 |
-
btnMod = gr.Button("载入模型")
|
54 |
-
statusa = gr.TextArea()
|
55 |
-
btnMod.click(self.loadCk, inputs=[modelstrs], outputs = [statusa])
|
56 |
-
with gr.Tab("Voice Conversion"):
|
57 |
-
gr.Markdown("""
|
58 |
-
录制或上传声音,并选择要转换的音色。
|
59 |
-
""")
|
60 |
-
with gr.Column():
|
61 |
-
record_audio = gr.Audio(label="record your voice", source="microphone")
|
62 |
-
upload_audio = gr.Audio(label="or upload audio here", source="upload")
|
63 |
-
source_speaker = gr.Dropdown(choices=self.idols, value="歩夢", label="source speaker")
|
64 |
-
target_speaker = gr.Dropdown(choices=self.idols, value="歩夢", label="target speaker")
|
65 |
-
with gr.Column():
|
66 |
-
message_box = gr.Textbox(label="Message")
|
67 |
-
converted_audio = gr.Audio(label='converted audio')
|
68 |
-
btn = gr.Button("Convert!")
|
69 |
-
btn.click(self.vc_fn, inputs=[source_speaker, target_speaker, record_audio, upload_audio],
|
70 |
-
outputs=[message_box, converted_audio])
|
71 |
-
with gr.Tab("小说合成(带字幕)"):
|
72 |
-
with gr.Row():
|
73 |
-
with gr.Column():
|
74 |
-
with gr.Row():
|
75 |
-
with gr.Column():
|
76 |
-
input1 = gr.TextArea(label="建议colab或本地克隆后运行本仓库", value="为什么你会那么熟练啊?你和雪菜亲过多少次了")
|
77 |
-
input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True)
|
78 |
-
input3 = gr.Dropdown(label="Speaker", choices=self.idols, value="歩夢", interactive=True)
|
79 |
-
btnVC = gr.Button("Submit")
|
80 |
-
with gr.Column():
|
81 |
-
input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.267)
|
82 |
-
input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.7)
|
83 |
-
input6 = gr.Slider(minimum=0.1, maximum=10, label="Duration", value=1)
|
84 |
-
output1 = gr.Audio(label="采样率22050")
|
85 |
-
subtitle = gr.outputs.File(label="字幕文件:subtitles.srt")
|
86 |
-
btnVC.click(self.infer2, inputs=[input1, input2, input3, input4, input5, input6], outputs=[output1,subtitle])
|
87 |
-
|
88 |
-
def loadCk(self,path):
|
89 |
-
self.hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
|
90 |
-
n_symbols = len(self.hps.symbols) if 'symbols' in self.hps.keys() else 0
|
91 |
-
self.net_g = SynthesizerTrn(
|
92 |
-
n_symbols,
|
93 |
-
self.hps.data.filter_length // 2 + 1,
|
94 |
-
self.hps.train.segment_size // self.hps.data.hop_length,
|
95 |
-
n_speakers=self.hps.data.n_speakers,
|
96 |
-
**self.hps.model).to(self.dev)
|
97 |
-
_ = self.net_g.eval()
|
98 |
-
_ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", self.net_g)
|
99 |
-
return "success"
|
100 |
-
|
101 |
-
def get_text(self,text):
|
102 |
-
text_norm = text_to_sequence(text,self.hps.symbols,self.hps.data.text_cleaners)
|
103 |
-
if self.hps.data.add_blank:
|
104 |
-
text_norm = commons.intersperse(text_norm, 0)
|
105 |
-
text_norm = torch.LongTensor(text_norm)
|
106 |
-
return text_norm
|
107 |
-
|
108 |
-
def is_japanese(self,string):
|
109 |
for ch in string:
|
110 |
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
|
111 |
return True
|
112 |
return False
|
113 |
-
|
114 |
-
|
115 |
import re
|
116 |
pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
|
117 |
if pattern.fullmatch(string):
|
118 |
return True
|
119 |
else:
|
120 |
return False
|
121 |
-
|
122 |
-
def selection(self,speaker):
|
123 |
-
if speaker == "高咲侑":
|
124 |
-
spk = 0
|
125 |
-
return spk
|
126 |
-
|
127 |
-
elif speaker == "歩夢":
|
128 |
-
spk = 1
|
129 |
-
return spk
|
130 |
-
|
131 |
-
elif speaker == "かすみ":
|
132 |
-
spk = 2
|
133 |
-
return spk
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
elif speaker == "愛":
|
144 |
-
spk = 5
|
145 |
-
return spk
|
146 |
-
|
147 |
-
elif speaker == "彼方":
|
148 |
-
spk = 6
|
149 |
-
return spk
|
150 |
-
|
151 |
-
elif speaker == "せつ菜":
|
152 |
-
spk = 7
|
153 |
-
return spk
|
154 |
-
elif speaker == "エマ":
|
155 |
-
spk = 8
|
156 |
-
return spk
|
157 |
-
elif speaker == "璃奈":
|
158 |
-
spk = 9
|
159 |
-
return spk
|
160 |
-
elif speaker == "栞子":
|
161 |
-
spk = 10
|
162 |
-
return spk
|
163 |
-
elif speaker == "ランジュ":
|
164 |
-
spk = 11
|
165 |
-
return spk
|
166 |
-
elif speaker == "ミア":
|
167 |
-
spk = 12
|
168 |
-
return spk
|
169 |
-
|
170 |
-
elif speaker == "派蒙":
|
171 |
-
spk = 16
|
172 |
-
return spk
|
173 |
-
|
174 |
-
elif speaker == "c1":
|
175 |
-
spk = 18
|
176 |
-
return spk
|
177 |
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
return spk
|
189 |
-
|
190 |
-
elif speaker == "なな":
|
191 |
-
spk = 23
|
192 |
-
return spk
|
193 |
-
|
194 |
-
elif speaker == "クロディーヌ":
|
195 |
-
spk = 24
|
196 |
-
return spk
|
197 |
-
|
198 |
-
elif speaker == "ひかり":
|
199 |
-
spk = 25
|
200 |
-
return spk
|
201 |
-
|
202 |
-
elif speaker == "純那":
|
203 |
-
spk = 26
|
204 |
-
return spk
|
205 |
-
|
206 |
-
elif speaker == "香子":
|
207 |
-
spk = 27
|
208 |
-
return spk
|
209 |
-
|
210 |
-
elif speaker == "真矢":
|
211 |
-
spk = 28
|
212 |
-
return spk
|
213 |
-
elif speaker == "双葉":
|
214 |
-
spk = 29
|
215 |
-
return spk
|
216 |
-
elif speaker == "ミチル":
|
217 |
-
spk = 30
|
218 |
-
return spk
|
219 |
-
elif speaker == "メイファン":
|
220 |
-
spk = 31
|
221 |
-
return spk
|
222 |
-
elif speaker == "やちよ":
|
223 |
-
spk = 32
|
224 |
-
return spk
|
225 |
-
elif speaker == "晶":
|
226 |
-
spk = 33
|
227 |
-
return spk
|
228 |
-
elif speaker == "いちえ":
|
229 |
-
spk = 34
|
230 |
-
return spk
|
231 |
-
elif speaker == "ゆゆ子":
|
232 |
-
spk = 35
|
233 |
-
return spk
|
234 |
-
elif speaker == "塁":
|
235 |
-
spk = 36
|
236 |
-
return spk
|
237 |
-
elif speaker == "珠緒":
|
238 |
-
spk = 37
|
239 |
-
return spk
|
240 |
-
elif speaker == "あるる":
|
241 |
-
spk = 38
|
242 |
-
return spk
|
243 |
-
elif speaker == "ララフィン":
|
244 |
-
spk = 39
|
245 |
-
return spk
|
246 |
-
elif speaker == "美空":
|
247 |
-
spk = 40
|
248 |
-
return spk
|
249 |
-
elif speaker == "静羽":
|
250 |
-
spk = 41
|
251 |
-
return spk
|
252 |
-
else:
|
253 |
-
return 0
|
254 |
-
|
255 |
-
|
256 |
-
def sle(self,language,text):
|
257 |
-
text = text.replace('\n','。').replace(' ',',')
|
258 |
if language == "中文":
|
259 |
tts_input1 = "[ZH]" + text + "[ZH]"
|
260 |
return tts_input1
|
261 |
elif language == "自动":
|
262 |
-
tts_input1 = f"[JA]{text}[JA]" if
|
263 |
return tts_input1
|
264 |
elif language == "日文":
|
265 |
tts_input1 = "[JA]" + text + "[JA]"
|
@@ -269,119 +115,161 @@ class VitsGradio:
|
|
269 |
return tts_input1
|
270 |
elif language == "手动":
|
271 |
return text
|
272 |
-
|
273 |
-
def extrac(self,text):
|
274 |
-
text = re.sub("<[^>]*>","",text)
|
275 |
-
result_list = re.split(r'\n', text)
|
276 |
-
final_list = []
|
277 |
-
for i in result_list:
|
278 |
-
if self.is_english(i):
|
279 |
-
i = romajitable.to_kana(i).katakana
|
280 |
-
i = i.replace('\n','').replace(' ','')
|
281 |
-
#Current length of single sentence: 20
|
282 |
-
if len(i)>1:
|
283 |
-
if len(i) > 20:
|
284 |
-
try:
|
285 |
-
cur_list = re.split(r'。|!', i)
|
286 |
-
for i in cur_list:
|
287 |
-
if len(i)>1:
|
288 |
-
final_list.append(i+'。')
|
289 |
-
except:
|
290 |
-
pass
|
291 |
-
else:
|
292 |
-
final_list.append(i)
|
293 |
-
final_list = [x for x in final_list if x != '']
|
294 |
-
print(final_list)
|
295 |
-
return final_list
|
296 |
-
|
297 |
-
def vc_fn(self,original_speaker, target_speaker, record_audio, upload_audio):
|
298 |
-
input_audio = record_audio if record_audio is not None else upload_audio
|
299 |
-
if input_audio is None:
|
300 |
-
return "You need to record or upload an audio", None
|
301 |
-
sampling_rate, audio = input_audio
|
302 |
-
original_speaker_id = self.selection(original_speaker)
|
303 |
-
target_speaker_id = self.selection(target_speaker)
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
0, 0].data.cpu().float().numpy()
|
323 |
-
del y, spec, spec_lengths, sid_src, sid_tgt
|
324 |
-
return "Success", (self.hps.data.sampling_rate, audio)
|
325 |
-
|
326 |
-
def infer(self, text ,language, speaker_id,n_scale= 0.667,n_scale_w = 0.8, l_scale = 1):
|
327 |
-
try:
|
328 |
-
speaker_id = int(self.selection(speaker_id))
|
329 |
t1 = time.time()
|
330 |
-
stn_tst =
|
331 |
with torch.no_grad():
|
332 |
-
x_tst = stn_tst.unsqueeze(0).to(
|
333 |
-
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(
|
334 |
-
sid = torch.LongTensor([speaker_id]).to(
|
335 |
-
audio =
|
336 |
t2 = time.time()
|
337 |
spending_time = "推理时间为:"+str(t2-t1)+"s"
|
338 |
print(spending_time)
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
logging.getLogger('numba').setLevel(logging.WARNING)
|
3 |
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
4 |
logging.getLogger('urllib3').setLevel(logging.WARNING)
|
5 |
+
import json
|
6 |
import re
|
7 |
import numpy as np
|
8 |
import IPython.display as ipd
|
|
|
15 |
import time
|
16 |
import datetime
|
17 |
import os
|
18 |
+
import pickle
|
19 |
+
import openai
|
20 |
+
from scipy.io.wavfile import write
|
21 |
+
def is_japanese(string):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
for ch in string:
|
23 |
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
|
24 |
return True
|
25 |
return False
|
26 |
+
|
27 |
+
def is_english(string):
|
28 |
import re
|
29 |
pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
|
30 |
if pattern.fullmatch(string):
|
31 |
return True
|
32 |
else:
|
33 |
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
def extrac(text):
|
36 |
+
text = re.sub("<[^>]*>","",text)
|
37 |
+
result_list = re.split(r'\n', text)
|
38 |
+
final_list = []
|
39 |
+
for i in result_list:
|
40 |
+
if is_english(i):
|
41 |
+
i = romajitable.to_kana(i).katakana
|
42 |
+
i = i.replace('\n','').replace(' ','')
|
43 |
+
#Current length of single sentence: 20
|
44 |
+
'''
|
45 |
+
if len(i)>1:
|
46 |
+
if len(i) > 20:
|
47 |
+
try:
|
48 |
+
cur_list = re.split(r'。|!', i)
|
49 |
+
for i in cur_list:
|
50 |
+
if len(i)>1:
|
51 |
+
final_list.append(i+'。')
|
52 |
+
except:
|
53 |
+
pass
|
54 |
+
else:
|
55 |
+
final_list.append(i)
|
56 |
+
'''
|
57 |
+
final_list.append(i)
|
58 |
+
final_list = [x for x in final_list if x != '']
|
59 |
+
print(final_list)
|
60 |
+
return final_list
|
61 |
|
62 |
+
def to_numpy(tensor: torch.Tensor):
|
63 |
+
return tensor.detach().cpu().numpy() if tensor.requires_grad \
|
64 |
+
else tensor.detach().numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
def chatgpt(text):
|
67 |
+
messages = []
|
68 |
+
try:
|
69 |
+
if text != 'exist':
|
70 |
+
with open('log.pickle', 'rb') as f:
|
71 |
+
messages = pickle.load(f)
|
72 |
+
messages.append({"role": "user", "content": text},)
|
73 |
+
chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
|
74 |
+
reply = chat.choices[0].message.content
|
75 |
+
messages.append({"role": "assistant", "content": reply})
|
76 |
+
print(messages[-1])
|
77 |
+
if len(messages) == 12:
|
78 |
+
messages[6:10] = messages[8:]
|
79 |
+
del messages[-2:]
|
80 |
+
with open('log.pickle', 'wb') as f:
|
81 |
+
pickle.dump(messages, f)
|
82 |
+
return reply
|
83 |
+
except:
|
84 |
+
messages.append({"role": "user", "content": text},)
|
85 |
+
chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
|
86 |
+
reply = chat.choices[0].message.content
|
87 |
+
messages.append({"role": "assistant", "content": reply})
|
88 |
+
print(messages[-1])
|
89 |
+
if len(messages) == 12:
|
90 |
+
messages[6:10] = messages[8:]
|
91 |
+
del messages[-2:]
|
92 |
+
with open('log.pickle', 'wb') as f:
|
93 |
+
pickle.dump(messages, f)
|
94 |
+
return reply
|
95 |
|
96 |
+
def get_symbols_from_json(path):
|
97 |
+
assert os.path.isfile(path)
|
98 |
+
with open(path, 'r') as f:
|
99 |
+
data = json.load(f)
|
100 |
+
return data['symbols']
|
101 |
|
102 |
+
def sle(language,text):
|
103 |
+
text = text.replace('\n', '').replace('\r', '').replace(" ", "")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
if language == "中文":
|
105 |
tts_input1 = "[ZH]" + text + "[ZH]"
|
106 |
return tts_input1
|
107 |
elif language == "自动":
|
108 |
+
tts_input1 = f"[JA]{text}[JA]" if is_japanese(text) else f"[ZH]{text}[ZH]"
|
109 |
return tts_input1
|
110 |
elif language == "日文":
|
111 |
tts_input1 = "[JA]" + text + "[JA]"
|
|
|
115 |
return tts_input1
|
116 |
elif language == "手动":
|
117 |
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
def get_text(text,hps_ms):
|
120 |
+
text_norm = text_to_sequence(text,hps_ms.symbols,hps_ms.data.text_cleaners)
|
121 |
+
if hps_ms.data.add_blank:
|
122 |
+
text_norm = commons.intersperse(text_norm, 0)
|
123 |
+
text_norm = torch.LongTensor(text_norm)
|
124 |
+
return text_norm
|
125 |
+
|
126 |
+
def create_tts_fn(net_g,hps,speaker_id):
|
127 |
+
speaker_id = int(speaker_id)
|
128 |
+
def tts_fn(history,is_gpt,api_key,is_audio,audiopath,repeat_time,text, language, extract, n_scale= 0.667,n_scale_w = 0.8, l_scale = 1 ):
|
129 |
+
repeat_time = int(repeat_time)
|
130 |
+
if is_gpt:
|
131 |
+
openai.api_key = api_key
|
132 |
+
text = chatgpt(text)
|
133 |
+
history[-1][1] = text
|
134 |
+
if not extract:
|
135 |
+
print(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
t1 = time.time()
|
137 |
+
stn_tst = get_text(sle(language,text),hps)
|
138 |
with torch.no_grad():
|
139 |
+
x_tst = stn_tst.unsqueeze(0).to(dev)
|
140 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
|
141 |
+
sid = torch.LongTensor([speaker_id]).to(dev)
|
142 |
+
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
|
143 |
t2 = time.time()
|
144 |
spending_time = "推理时间为:"+str(t2-t1)+"s"
|
145 |
print(spending_time)
|
146 |
+
file_path = "subtitles.srt"
|
147 |
+
try:
|
148 |
+
write(audiopath + '.wav',22050,audio)
|
149 |
+
if is_audio:
|
150 |
+
for i in range(repeat_time):
|
151 |
+
cmd = 'ffmpeg -y -i ' + audiopath + '.wav' + ' -ar 44100 '+ audiopath.replace('temp','temp'+str(i))
|
152 |
+
os.system(cmd)
|
153 |
+
except:
|
154 |
+
pass
|
155 |
+
return history,file_path,(hps.data.sampling_rate,audio)
|
156 |
+
else:
|
157 |
+
a = ['【','[','(','(']
|
158 |
+
b = ['】',']',')',')']
|
159 |
+
for i in a:
|
160 |
+
text = text.replace(i,'<')
|
161 |
+
for i in b:
|
162 |
+
text = text.replace(i,'>')
|
163 |
+
final_list = extrac(text.replace('“','').replace('”',''))
|
164 |
+
audio_fin = []
|
165 |
+
c = 0
|
166 |
+
t = datetime.timedelta(seconds=0)
|
167 |
+
f1 = open("subtitles.srt",'w',encoding='utf-8')
|
168 |
+
for sentence in final_list:
|
169 |
+
c +=1
|
170 |
+
stn_tst = get_text(sle(language,sentence),hps)
|
171 |
+
with torch.no_grad():
|
172 |
+
x_tst = stn_tst.unsqueeze(0).to(dev)
|
173 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
|
174 |
+
sid = torch.LongTensor([speaker_id]).to(dev)
|
175 |
+
t1 = time.time()
|
176 |
+
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=n_scale, noise_scale_w=n_scale_w, length_scale=l_scale)[0][0,0].data.cpu().float().numpy()
|
177 |
+
t2 = time.time()
|
178 |
+
spending_time = "第"+str(c)+"句的推理时间为:"+str(t2-t1)+"s"
|
179 |
+
print(spending_time)
|
180 |
+
time_start = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
|
181 |
+
last_time = datetime.timedelta(seconds=len(audio)/float(22050))
|
182 |
+
t+=last_time
|
183 |
+
time_end = str(t).split(".")[0] + "," + str(t.microseconds)[:3]
|
184 |
+
print(time_end)
|
185 |
+
f1.write(str(c-1)+'\n'+time_start+' --> '+time_end+'\n'+sentence+'\n\n')
|
186 |
+
audio_fin.append(audio)
|
187 |
+
try:
|
188 |
+
write(audiopath + '.wav',22050,np.concatenate(audio_fin))
|
189 |
+
if is_audio:
|
190 |
+
for i in range(repeat_time):
|
191 |
+
cmd = 'ffmpeg -y -i ' + audiopath + '.wav' + ' -ar 44100 '+ audiopath.replace('temp','temp'+str(i))
|
192 |
+
os.system(cmd)
|
193 |
+
|
194 |
+
except:
|
195 |
+
pass
|
196 |
+
|
197 |
+
file_path = "subtitles.srt"
|
198 |
+
return history,file_path,(hps.data.sampling_rate, np.concatenate(audio_fin))
|
199 |
+
return tts_fn
|
200 |
|
201 |
+
def bot(history,user_message):
|
202 |
+
return history + [[user_message, None]]
|
203 |
+
|
204 |
+
if __name__ == '__main__':
|
205 |
+
hps = utils.get_hparams_from_file('checkpoints/tmp/config.json')
|
206 |
+
dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
207 |
+
models = []
|
208 |
+
schools = ["Seisho-Nijigasaki","Seisho-betterchinese","Nijigasaki","Nijigasaki-biaobei"]
|
209 |
+
lan = ["中文","日文","自动","手动"]
|
210 |
+
with open("checkpoints/info.json", "r", encoding="utf-8") as f:
|
211 |
+
models_info = json.load(f)
|
212 |
+
for i in models_info:
|
213 |
+
checkpoint = models_info[i]["checkpoint"]
|
214 |
+
phone_dict = {
|
215 |
+
symbol: i for i, symbol in enumerate(hps.symbols)
|
216 |
+
}
|
217 |
+
n_symbols = len(hps.symbols) if 'symbols' in hps.keys() else 0
|
218 |
+
net_g = SynthesizerTrn(
|
219 |
+
n_symbols,
|
220 |
+
hps.data.filter_length // 2 + 1,
|
221 |
+
hps.train.segment_size // hps.data.hop_length,
|
222 |
+
n_speakers=hps.data.n_speakers,
|
223 |
+
**hps.model).to(dev)
|
224 |
+
_ = net_g.eval()
|
225 |
+
_ = utils.load_checkpoint(checkpoint, net_g)
|
226 |
+
school = models_info[i]
|
227 |
+
speakers = school["speakers"]
|
228 |
+
content = []
|
229 |
+
for j in speakers:
|
230 |
+
sid = int(speakers[j]['sid'])
|
231 |
+
title = school
|
232 |
+
example = speakers[j]['speech']
|
233 |
+
name = speakers[j]["name"]
|
234 |
+
content.append((sid, name, title, example, create_tts_fn(net_g,hps,sid)))
|
235 |
+
models.append(content)
|
236 |
+
|
237 |
+
with gr.Blocks() as app:
|
238 |
+
with gr.Tabs():
|
239 |
+
for i in schools:
|
240 |
+
with gr.TabItem(i):
|
241 |
+
for (sid, name, title, example, tts_fn) in models[schools.index(i)]:
|
242 |
+
with gr.TabItem(name):
|
243 |
+
with gr.Column():
|
244 |
+
with gr.Row():
|
245 |
+
with gr.Row():
|
246 |
+
gr.Markdown(
|
247 |
+
'<div align="center">'
|
248 |
+
f'<img style="width:auto;height:400px;" src="file/image/{name}.png">'
|
249 |
+
'</div>'
|
250 |
+
)
|
251 |
+
chatbot = gr.Chatbot()
|
252 |
+
with gr.Row():
|
253 |
+
with gr.Column(scale=0.85):
|
254 |
+
input1 = gr.TextArea(label="Text", value=example,lines = 1)
|
255 |
+
with gr.Column(scale=0.15, min_width=0):
|
256 |
+
btnVC = gr.Button("Send")
|
257 |
+
output1 = gr.Audio(label="采样率22050")
|
258 |
+
with gr.Accordion(label="Setting", open=False):
|
259 |
+
input2 = gr.Dropdown(label="Language", choices=lan, value="自动", interactive=True)
|
260 |
+
input3 = gr.Checkbox(value=False, label="长句切割(小说合成)")
|
261 |
+
input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.6)
|
262 |
+
input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.668)
|
263 |
+
input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
|
264 |
+
with gr.Accordion(label="Advanced Setting", open=False):
|
265 |
+
audio_input3 = gr.Dropdown(label="重复次数", choices=list(range(101)), value='0', interactive=True)
|
266 |
+
api_input1 = gr.Checkbox(value=False, label="接入chatgpt")
|
267 |
+
api_input2 = gr.TextArea(label="api-key",lines=1,value = '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')
|
268 |
+
output2 = gr.outputs.File(label="字幕文件:subtitles.srt")
|
269 |
+
audio_input1 = gr.Checkbox(value=False, label="修改音频路径(live2d)")
|
270 |
+
audio_input2 = gr.TextArea(label="音频路径",lines=1,value = 'D:/app_develop/live2d_whole/2010002/sounds/temp.wav')
|
271 |
+
btnVC.click(bot, inputs = [chatbot,input1], outputs = [chatbot]).then(
|
272 |
+
tts_fn, inputs=[chatbot,api_input1,api_input2,audio_input1,audio_input2,audio_input3,input1,input2,input3,input4,input5,input6], outputs=[chatbot,output2,output1]
|
273 |
+
)
|
274 |
+
|
275 |
+
app.launch()
|