Spaces:
Sleeping
Sleeping
File size: 5,424 Bytes
37adcee 6480777 37adcee 6480777 37adcee 6480777 37adcee 6480777 37adcee 6480777 37adcee 6480777 37adcee 13d80e4 37adcee b2c8b1e 13d80e4 b2c8b1e 6480777 b2c8b1e 6480777 13d80e4 b2c8b1e 37adcee b2c8b1e 13d80e4 37adcee 6480777 37adcee 6480777 37adcee 6480777 37adcee 6480777 37adcee f713d11 e995600 6480777 f713d11 37adcee 6480777 37adcee f713d11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread
# モデルの定義
MODELS = {
"Borea-Phi-3.5-mini-Jp": "AXCXEPT/Borea-Phi-3.5-mini-Instruct-Jp",
"EZO-Common-9B": "HODACHI/EZO-Common-9B-gemma-2-it",
"Phi-3.5-mini": "microsoft/Phi-3.5-mini-instruct",
}
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# タイトルとプレースホルダーを日本語に変更
TITLE = "<h1><center>Borea/EZO デモアプリ</center></h1>"
PLACEHOLDER = """
<center>
<p>こんにちは、私はAIアシスタントです。何でも質問してください。</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
model = None
tokenizer = None
def load_model(model_name):
global model, tokenizer
model_path = MODELS[model_name]
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
@spaces.GPU()
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 0.8,
max_new_tokens: int = 1024,
top_p: float = 1.0,
top_k: int = 20,
repetition_penalty: float = 1.2,
model_name: str = "Phi-3.5-mini"
):
global model, tokenizer
if model is None or tokenizer is None or model.name_or_path != MODELS[model_name]:
load_model(model_name)
print(f'message: {message}')
print(f'history: {history}')
conversation = [
{"role": "system", "content": system_prompt}
]
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=False if temperature == 0 else True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=repetition_penalty,
eos_token_id=tokenizer.eos_token_id,
streamer=streamer,
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
with gr.Blocks(css=CSS, theme='ParityError/Interstellar') as demo:
gr.HTML(TITLE)
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs=[
gr.Textbox(
value="あなたは親切なアシスタントです。",
label="システムプロンプト",
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="温度 (Temperature)",
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=1024,
label="最大新規トークン数",
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
),
gr.Slider(
minimum=1.0,
maximum=2.0,
step=0.1,
value=1.2,
label="繰り返しペナルティ",
),
gr.Dropdown(
choices=list(MODELS.keys()),
value="Borea-Phi-3.5-mini-Jp",
label="モデル選択",
),
],
examples=[
["語彙の勉強を手伝ってください。空欄を埋めるための文章を書いてください。私は正しい選択肢を選びます。"],
["子供のアート作品でできる5つの創造的なことを教えてください。捨てたくはないのですが、散らかってしまいます。"],
["ローマ帝国についてのランダムな面白い事実を教えてください。"],
["ウェブサイトの固定ヘッダーのCSSとJavaScriptのコードスニペットを見せてください。"],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()
|