import os import time import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig import gradio as gr from threading import Thread # モデルの定義 MODELS = { "Borea-Phi-3.5-mini-Jp": "AXCXEPT/Borea-Phi-3.5-mini-Instruct-Jp", "EZO-Common-9B": "HODACHI/EZO-Common-9B-gemma-2-it", "Phi-3.5-mini": "microsoft/Phi-3.5-mini-instruct", } HF_TOKEN = os.environ.get("HF_TOKEN", None) # タイトルとプレースホルダーを日本語に変更 TITLE = "

Borea/EZO デモアプリ

" PLACEHOLDER = """

こんにちは、私はAIアシスタントです。何でも質問してください。

""" CSS = """ .duplicate-button { margin: auto !important; color: white !important; background: black !important; border-radius: 100vh !important; } h3 { text-align: center; } """ device = "cuda" if torch.cuda.is_available() else "cpu" quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4" ) model = None tokenizer = None def load_model(model_name): global model, tokenizer model_path = MODELS[model_name] tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.bfloat16, device_map="auto", quantization_config=quantization_config ) @spaces.GPU() def stream_chat( message: str, history: list, system_prompt: str, temperature: float = 0.8, max_new_tokens: int = 1024, top_p: float = 1.0, top_k: int = 20, repetition_penalty: float = 1.2, model_name: str = "Phi-3.5-mini" ): global model, tokenizer if model is None or tokenizer is None or model.name_or_path != MODELS[model_name]: load_model(model_name) print(f'message: {message}') print(f'history: {history}') conversation = [ {"role": "system", "content": system_prompt} ] for prompt, answer in history: conversation.extend([ {"role": "user", "content": prompt}, {"role": "assistant", "content": answer}, ]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=False if temperature == 0 else True, top_p=top_p, top_k=top_k, temperature=temperature, repetition_penalty=repetition_penalty, eos_token_id=tokenizer.eos_token_id, streamer=streamer, ) with torch.no_grad(): thread = Thread(target=model.generate, kwargs=generate_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text yield buffer chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER) with gr.Blocks(css=CSS, theme='ParityError/Interstellar') as demo: gr.HTML(TITLE) gr.ChatInterface( fn=stream_chat, chatbot=chatbot, fill_height=True, additional_inputs=[ gr.Textbox( value="あなたは親切なアシスタントです。", label="システムプロンプト", ), gr.Slider( minimum=0, maximum=1, step=0.1, value=0.8, label="温度 (Temperature)", ), gr.Slider( minimum=128, maximum=8192, step=1, value=1024, label="最大新規トークン数", ), gr.Slider( minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p", ), gr.Slider( minimum=1, maximum=20, step=1, value=20, label="top_k", ), gr.Slider( minimum=1.0, maximum=2.0, step=0.1, value=1.2, label="繰り返しペナルティ", ), gr.Dropdown( choices=list(MODELS.keys()), value="Borea-Phi-3.5-mini-Jp", label="モデル選択", ), ], examples=[ ["語彙の勉強を手伝ってください。空欄を埋めるための文章を書いてください。私は正しい選択肢を選びます。"], ["子供のアート作品でできる5つの創造的なことを教えてください。捨てたくはないのですが、散らかってしまいます。"], ["ローマ帝国についてのランダムな面白い事実を教えてください。"], ["ウェブサイトの固定ヘッダーのCSSとJavaScriptのコードスニペットを見せてください。"], ], cache_examples=False, ) if __name__ == "__main__": demo.launch()