File size: 6,499 Bytes
9887d4c
 
 
 
7696de6
 
9887d4c
a1e9510
7696de6
 
 
 
 
9887d4c
7696de6
28fa58e
af079bb
b93d27c
7696de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d21a93
7696de6
 
 
 
 
 
 
 
 
 
b93d27c
7696de6
b93d27c
7696de6
 
 
 
 
 
af079bb
9887d4c
 
 
28fa58e
03a8244
9887d4c
 
7696de6
9d21a93
8c21422
 
4bacbb7
7696de6
9887d4c
 
7696de6
 
 
5072f90
7696de6
 
 
 
 
 
9887d4c
5072f90
9887d4c
 
6eba631
6845416
f57a5fe
8558373
9887d4c
 
 
 
 
7696de6
9887d4c
fbdf399
 
 
2935cbc
 
 
9887d4c
 
 
 
3be1ef1
9887d4c
 
 
 
 
 
 
 
 
 
 
 
7696de6
7e829d4
 
 
 
e3acd43
7e829d4
 
 
 
 
fbdf399
9887d4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
099c99b
9887d4c
 
 
 
 
 
099c99b
9887d4c
 
 
 
 
 
 
099c99b
9887d4c
 
 
 
7696de6
9887d4c
7696de6
9887d4c
7e829d4
9887d4c
 
7696de6
 
8245d19
7696de6
5ddbee5
9887d4c
 
f8ac431
7696de6
 
03a8244
7696de6
9887d4c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import gradio as gr
import numpy as np
import random
import torch
from PIL import Image
import os

from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import StableDiffusionXLPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import AutoencoderKL, EulerDiscreteScheduler

from huggingface_hub import snapshot_download
import spaces 

device = "cuda"
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
ckpt_dir = f'{root_dir}/weights/Kolors'

snapshot_download(repo_id="Kwai-Kolors/Kolors", local_dir=ckpt_dir)
snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus", local_dir=f"{root_dir}/weights/Kolors-IP-Adapter-Plus")

# Load models
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)

image_encoder = CLIPVisionModelWithProjection.from_pretrained(
    f'{root_dir}/weights/Kolors-IP-Adapter-Plus/image_encoder',
    ignore_mismatched_sizes=True
).to(dtype=torch.float16, device=device)

ip_img_size = 336
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)

pipe = StableDiffusionXLPipeline(
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    image_encoder=image_encoder,
    feature_extractor=clip_image_processor,
    force_zeros_for_empty_prompt=False
).to(device)

#pipe = pipe.to(device)
#pipe.enable_model_cpu_offload()

if hasattr(pipe.unet, 'encoder_hid_proj'):
    pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj

pipe.load_ip_adapter(f'{root_dir}/weights/Kolors-IP-Adapter-Plus', subfolder="", weight_name=["ip_adapter_plus_general.bin"])

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU
def infer(prompt, ip_adapter_image, ip_adapter_scale=0.5, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    generator = torch.Generator(device="cuda").manual_seed(seed)
    pipe.to("cuda")
    image_encoder.to("cuda")
    pipe.image_encoder = image_encoder
    pipe.set_ip_adapter_scale([ip_adapter_scale])
    
    image = pipe(
        prompt=prompt,
        ip_adapter_image=[ip_adapter_image],
        negative_prompt=negative_prompt,
        height=height,
        width=width,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    
    return image, seed

examples = [
    ["A dog", "minta.jpeg", 0.3],
    ["A capybara", "king-min.png", 0.5],
    ["A cat", "blue_hair.png", 0.5],
    ["", "meow.jpeg", 1.0],
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 720px;
}
#result img{
    object-position: top;
}
#result .image-container{
    height: 100%
}
"""
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Kolors IP-Adapter - image reference and variations
        """)
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        
        with gr.Row():
            with gr.Column():
                ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil")
                ip_adapter_scale = gr.Slider(
                    label="Image influence scale",
                    info="Use 1 for creating variations",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.05,
                    value=0.5,
                )
            result = gr.Image(label="Result", elem_id="result")

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=5.0,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=50,
                )
            
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt, ip_adapter_image, ip_adapter_scale],
            outputs=[result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, ip_adapter_image, ip_adapter_scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )

demo.queue().launch()