Spaces:
Running
Running
import gradio as gr | |
import ctranslate2 | |
from transformers import AutoTokenizer | |
from huggingface_hub import snapshot_download | |
from codeexecutor import postprocess_completion, get_majority_vote | |
# Define the model and tokenizer loading | |
model_prompt = "Solve the following mathematical problem: " | |
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR") | |
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina") | |
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8") | |
iterations = 10 | |
# Function to generate predictions using the model | |
def get_prediction(question): | |
input_text = model_prompt + question | |
input_tokens = tokenizer.tokenize(input_text) | |
results = generator.generate_batch([input_tokens]) | |
output_tokens = results[0].sequences[0] | |
predicted_answer = tokenizer.convert_tokens_to_string(output_tokens) | |
return predicted_answer | |
# Function to perform majority voting across multiple predictions | |
def majority_vote(question, num_iterations=10): | |
all_predictions = [] | |
all_answer = [] | |
for _ in range(num_iterations): | |
prediction = get_prediction(question) | |
answer = postprocess_completion(prediction, True, True) | |
all_predictions.append(prediction) | |
all_answer.append(answer) | |
majority_voted_pred = max(set(all_predictions), key=all_predictions.count) | |
majority_voted_ans = get_majority_vote(all_answer) | |
return majority_voted_pred, all_predictions, majority_voted_ans | |
# Gradio interface for user input and output | |
def gradio_interface(question, correct_answer): | |
final_prediction, all_predictions, final_answer = majority_vote(question, iterations) | |
return { | |
"Question": question, | |
"Generated Answers (10 iterations)": all_predictions, | |
"Majority-Voted Prediction": final_prediction, | |
"Correct solution": correct_answer, | |
"Majority answer": final_answer | |
} | |
# Custom CSS for enhanced design | |
custom_css = """ | |
body { | |
background-color: #fafafa; | |
font-family: 'Open Sans', sans-serif; | |
} | |
.gradio-container { | |
background-color: #ffffff; | |
border: 3px solid #007acc; | |
border-radius: 15px; | |
padding: 20px; | |
box-shadow: 0 8px 20px rgba(0, 0, 0, 0.15); | |
max-width: 800px; | |
margin: 50px auto; | |
} | |
h1 { | |
font-family: 'Poppins', sans-serif; | |
color: #007acc; | |
font-weight: bold; | |
font-size: 32px; | |
text-align: center; | |
margin-bottom: 20px; | |
} | |
p { | |
font-family: 'Roboto', sans-serif; | |
font-size: 18px; | |
color: #333; | |
text-align: center; | |
margin-bottom: 15px; | |
} | |
input, textarea { | |
font-family: 'Montserrat', sans-serif; | |
font-size: 16px; | |
padding: 10px; | |
border: 2px solid #007acc; | |
border-radius: 10px; | |
background-color: #f1f8ff; | |
margin-bottom: 15px; | |
} | |
#math_question, #correct_answer { | |
background-color: #e6f2ff; | |
color: #333; | |
border-radius: 8px; | |
padding: 12px; | |
font-weight: 500px; /* Apply bold */ | |
} | |
textarea { | |
min-height: 150px; | |
} | |
.gr-button-primary { | |
background-color: #007acc !important; | |
color: white !important; | |
border-radius: 10px !important; | |
font-size: 18px !important; | |
font-weight: bold !important; | |
padding: 10px 20px !important; | |
font-family: 'Montserrat', sans-serif !important; | |
transition: background-color 0.3s ease !important; | |
} | |
.gr-button-primary:hover { | |
background-color: #005f99 !important; | |
} | |
.gr-button-secondary { | |
background-color: #f44336 !important; | |
color: white !important; | |
border-radius: 10px !important; | |
font-size: 18px !important; | |
font-weight: bold !important; | |
padding: 10px 20px !important; | |
font-family: 'Montserrat', sans-serif !important; | |
transition: background-color 0.3s ease !important; | |
} | |
.gr-button-secondary:hover { | |
background-color: #c62828 !important; | |
} | |
.gr-output { | |
background-color: #e0f7fa; | |
border: 2px solid #007acc; | |
border-radius: 10px; | |
padding: 15px; | |
font-size: 16px; | |
font-family: 'Roboto', sans-serif; | |
font-weight: bold; | |
color: #00796b; | |
} | |
""" | |
# Gradio app setup | |
interface = gr.Interface( | |
fn=gradio_interface, | |
inputs=[ | |
gr.Textbox(label="π§ Math Question", placeholder="Enter your math question here...", elem_id="math_question"), | |
gr.Textbox(label="β Correct Answer", placeholder="Enter the correct answer here...", elem_id="correct_answer"), | |
], | |
outputs=[ | |
gr.JSON(label="π Results"), # Display the results in a JSON format | |
], | |
title="π’ Math Question Solver", | |
description="Enter a math question to get the model prediction and see all generated answers.", | |
css=custom_css # Apply custom CSS | |
) | |
if __name__ == "__main__": | |
interface.launch() | |