Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
import ctranslate2
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
from codeexecutor import postprocess_completion,get_majority_vote
|
7 |
+
|
8 |
+
# Define the model and tokenizer loading
|
9 |
+
model_prompt = "Solve the following mathematical problem: "
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
|
11 |
+
model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
|
12 |
+
generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
|
13 |
+
iterations=10
|
14 |
+
|
15 |
+
# Function to generate predictions using the model
|
16 |
+
def get_prediction(question):
|
17 |
+
input_text = model_prompt + question
|
18 |
+
input_tokens = tokenizer.tokenize(input_text)
|
19 |
+
results = generator.generate_batch([input_tokens])
|
20 |
+
output_tokens = results[0].sequences[0]
|
21 |
+
predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
|
22 |
+
return predicted_answer
|
23 |
+
|
24 |
+
# Function to perform majority voting across multiple predictions
|
25 |
+
def majority_vote(question, num_iterations=10):
|
26 |
+
all_predictions = []
|
27 |
+
all_answer=[]
|
28 |
+
for _ in range(num_iterations):
|
29 |
+
prediction = get_prediction(question)
|
30 |
+
answer=postprocess_completion(prediction,True,True)
|
31 |
+
all_predictions.append(prediction)
|
32 |
+
all_answer.append(answer)
|
33 |
+
majority_voted_pred = max(set(all_predictions), key=all_predictions.count)
|
34 |
+
majority_voted_ans=get_majority_vote(all_answer)
|
35 |
+
return majority_voted_pred, all_predictions,majority_voted_ans
|
36 |
+
|
37 |
+
# Gradio interface for user input and output
|
38 |
+
def gradio_interface(question, correct_answer):
|
39 |
+
final_prediction, all_predictions,final_answer = majority_vote(question, iterations)
|
40 |
+
return {
|
41 |
+
"Question": question,
|
42 |
+
"Generated Answers (10 iterations)": all_predictions,
|
43 |
+
"Majority-Voted Prediction": final_prediction,
|
44 |
+
"Correct solution": correct_answer,
|
45 |
+
"Majority answer": final_answer
|
46 |
+
}
|
47 |
+
|
48 |
+
# Gradio app setup
|
49 |
+
interface = gr.Interface(
|
50 |
+
fn=gradio_interface,
|
51 |
+
inputs=[
|
52 |
+
gr.Textbox(label="Math Question"),
|
53 |
+
gr.Textbox(label="Correct Answer"),
|
54 |
+
],
|
55 |
+
outputs=[
|
56 |
+
gr.JSON(label="Results"), # Display the results in a JSON format
|
57 |
+
],
|
58 |
+
title="Math Question Solver",
|
59 |
+
description="Enter a math question to get the model prediction and see all generated answers.",
|
60 |
+
)
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
|
64 |
+
|