import gradio as gr import ctranslate2 from transformers import AutoTokenizer from huggingface_hub import snapshot_download from codeexecutor import postprocess_completion, get_majority_vote # Define the model and tokenizer loading model_prompt = "Solve the following mathematical problem: " tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR") model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina") generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8") iterations = 10 # Function to generate predictions using the model def get_prediction(question): input_text = model_prompt + question input_tokens = tokenizer.tokenize(input_text) results = generator.generate_batch([input_tokens]) output_tokens = results[0].sequences[0] predicted_answer = tokenizer.convert_tokens_to_string(output_tokens) return predicted_answer # Function to perform majority voting across multiple predictions def majority_vote(question, num_iterations=10): all_predictions = [] all_answer = [] for _ in range(num_iterations): prediction = get_prediction(question) answer = postprocess_completion(prediction, True, True) all_predictions.append(prediction) all_answer.append(answer) majority_voted_pred = max(set(all_predictions), key=all_predictions.count) majority_voted_ans = get_majority_vote(all_answer) return majority_voted_pred, all_predictions, majority_voted_ans # Gradio interface for user input and output def gradio_interface(question, correct_answer): final_prediction, all_predictions, final_answer = majority_vote(question, iterations) return { "Question": question, "Generated Answers (10 iterations)": all_predictions, "Majority-Voted Prediction": final_prediction, "Correct solution": correct_answer, "Majority answer": final_answer } # Custom CSS for enhanced design custom_css = """ body { background-color: #fafafa; font-family: 'Open Sans', sans-serif; } .gradio-container { background-color: #ffffff; border: 3px solid #007acc; border-radius: 15px; padding: 20px; box-shadow: 0 8px 20px rgba(0, 0, 0, 0.15); max-width: 800px; margin: 50px auto; } h1 { font-family: 'Poppins', sans-serif; color: #007acc; font-weight: bold; font-size: 32px; text-align: center; margin-bottom: 20px; } p { font-family: 'Roboto', sans-serif; font-size: 18px; color: #333; text-align: center; margin-bottom: 15px; } input, textarea { font-family: 'Montserrat', sans-serif; font-size: 16px; padding: 10px; border: 2px solid #007acc; border-radius: 10px; background-color: #f1f8ff; margin-bottom: 15px; } #math_question, #correct_answer { background-color: #e6f2ff; color: #333; border-radius: 8px; padding: 12px; font-weight: 500px; /* Apply bold */ } textarea { min-height: 150px; } .gr-button-primary { background-color: #007acc !important; color: white !important; border-radius: 10px !important; font-size: 18px !important; font-weight: bold !important; padding: 10px 20px !important; font-family: 'Montserrat', sans-serif !important; transition: background-color 0.3s ease !important; } .gr-button-primary:hover { background-color: #005f99 !important; } .gr-button-secondary { background-color: #f44336 !important; color: white !important; border-radius: 10px !important; font-size: 18px !important; font-weight: bold !important; padding: 10px 20px !important; font-family: 'Montserrat', sans-serif !important; transition: background-color 0.3s ease !important; } .gr-button-secondary:hover { background-color: #c62828 !important; } .gr-output { background-color: #e0f7fa; border: 2px solid #007acc; border-radius: 10px; padding: 15px; font-size: 16px; font-family: 'Roboto', sans-serif; font-weight: bold; color: #00796b; } """ # Gradio app setup interface = gr.Interface( fn=gradio_interface, inputs=[ gr.Textbox(label="🧠 Math Question", placeholder="Enter your math question here...", elem_id="math_question"), gr.Textbox(label="✅ Correct Answer", placeholder="Enter the correct answer here...", elem_id="correct_answer"), ], outputs=[ gr.JSON(label="📊 Results"), # Display the results in a JSON format ], title="🔢 Math Question Solver", description="Enter a math question to get the model prediction and see all generated answers.", css=custom_css # Apply custom CSS ) if __name__ == "__main__": interface.launch()