import gradio as gr import ctranslate2 from transformers import AutoTokenizer from huggingface_hub import snapshot_download # Define the model and tokenizer loading model_prompt = "Solve the following mathematical problem: " tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR") model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina") generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8") # Function to generate predictions using the model def get_prediction(question): input_text = model_prompt + question input_tokens = tokenizer.tokenize(input_text) results = generator.generate_batch([input_tokens]) output_tokens = results[0].sequences[0] predicted_answer = tokenizer.convert_tokens_to_string(output_tokens) return predicted_answer # Function to perform majority voting across multiple predictions def majority_vote(question, num_iterations=10): all_predictions = [] for _ in range(num_iterations): prediction = get_prediction(question) all_predictions.append(prediction) majority_voted_pred = max(set(all_predictions), key=all_predictions.count) return majority_voted_pred, all_predictions # Gradio interface for user input and output def gradio_interface(question, correct_answer): final_prediction, all_predictions = majority_vote(question, num_iterations=10) return { "Question": question, "Generated Answers (10 iterations)": all_predictions, "Majority-Voted Prediction": final_prediction, "Correct Answer": correct_answer } # Gradio app setup interface = gr.Interface( fn=gradio_interface, inputs=[ gr.Textbox(label="Math Question"), gr.Textbox(label="Correct Answer"), ], outputs=[ gr.JSON(label="Results"), # Display the results in a JSON format ], title="Math Question Solver", description="Enter a math question to get the model prediction and see all generated answers.", ) if __name__ == "__main__": interface.launch()