Maksimkrug commited on
Commit
134cc15
1 Parent(s): 4a69975

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -11
app.py CHANGED
@@ -3,7 +3,9 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
 
 
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
@@ -12,24 +14,28 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("Matthijs/mms-tts-deu")
 
 
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("Matthijs/mms-tts-deu").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
 
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "de"})
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt", truncation=True)
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
- return speech.cpu()
 
33
 
34
 
35
  def speech_to_speech_translation(audio):
@@ -41,9 +47,8 @@ def speech_to_speech_translation(audio):
41
 
42
  title = "Cascaded STST"
43
  description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
-
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
49
 
@@ -69,4 +74,4 @@ file_translate = gr.Interface(
69
  with demo:
70
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
71
 
72
- demo.launch()
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ # from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor,
7
+ from transformers import pipeline
8
+ from transformers import VitsModel, VitsTokenizer
9
 
10
 
11
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
14
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
15
 
16
  # load text-to-speech checkpoint and speaker embeddings
17
+ # processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
18
+ # model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
19
+ # vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
20
 
21
+ # load text-to-speach checkpoint for german language
22
+ model = VitsModel.from_pretrained("Matthijs/mms-tts-deu")
23
+ tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu")
24
 
25
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
26
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
27
 
28
 
29
  def translate(audio):
30
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language": "de"})
31
  return outputs["text"]
32
 
33
 
34
  def synthesise(text):
35
+ inputs = tokenizer(text=text, return_tensors="pt")
36
+ with torch.no_grad():
37
+ speech = model(inputs["input_ids"].to(device))
38
+ return speech.audio[0]
39
 
40
 
41
  def speech_to_speech_translation(audio):
 
47
 
48
  title = "Cascaded STST"
49
  description = """
50
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in German. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
51
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
 
52
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
53
  """
54
 
 
74
  with demo:
75
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
76
 
77
+ demo.launch()