Spaces:
Runtime error
Runtime error
deploy at 2024-08-21 10:24:01.130174
Browse files- config.ini +5 -0
- main.py +48 -11
- timeline.csv +15 -20
config.ini
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[DEFAULT]
|
2 |
+
dataset_id = space-backup
|
3 |
+
db_dir = data
|
4 |
+
private_backup = True
|
5 |
+
|
main.py
CHANGED
@@ -4,6 +4,7 @@ import os
|
|
4 |
import json
|
5 |
import pandas as pd
|
6 |
import traceback
|
|
|
7 |
from datetime import datetime
|
8 |
from typing import Literal
|
9 |
from pydantic_core import from_json
|
@@ -16,6 +17,7 @@ from langchain_openai import ChatOpenAI
|
|
16 |
from langchain_anthropic import ChatAnthropic
|
17 |
from pydantic import BaseModel, Field, ValidationError
|
18 |
from langchain_openai import ChatOpenAI
|
|
|
19 |
from fasthtml.common import *
|
20 |
from fasthtml.components import Svg
|
21 |
from langchain_community.utilities.wikipedia import WikipediaAPIWrapper
|
@@ -36,7 +38,7 @@ class Event(BaseModel):
|
|
36 |
sentiment: Literal["Positive", "Negative"] = Field(..., description="Categorization of the event sentiment")
|
37 |
|
38 |
class EventResponse(BaseModel):
|
39 |
-
events: List[Event] = Field(min_length=10, max_length=
|
40 |
|
41 |
# Set up the Pydantic output parser
|
42 |
parser = PydanticOutputParser(pydantic_object=EventResponse)
|
@@ -44,7 +46,7 @@ parser = PydanticOutputParser(pydantic_object=EventResponse)
|
|
44 |
# LangChain prompt template with format instructions
|
45 |
event_extraction_template = """
|
46 |
Extract the time based informations or events from the context and return a list of events with time, event description and event sentiment type whether it was positive or negative event.
|
47 |
-
The context may contain information about people, organization or any other entity.
|
48 |
|
49 |
<context>
|
50 |
{context}
|
@@ -56,6 +58,8 @@ The response must follow the following schema strictly. There will be penalty fo
|
|
56 |
{format_instructions}
|
57 |
</schema>
|
58 |
|
|
|
|
|
59 |
Output:
|
60 |
"""
|
61 |
|
@@ -67,14 +71,23 @@ event_prompt = PromptTemplate(
|
|
67 |
|
68 |
# Function to get the appropriate language model based on user selection
|
69 |
def getModel(model, key):
|
70 |
-
if(model == 'OpenAI'):
|
71 |
os.environ['OPENAI_API_KEY'] = key
|
72 |
return ChatOpenAI(temperature=0, # Set to 0 for deterministic output
|
73 |
model="gpt-4o-2024-08-06", # Using the GPT-4 Turbo model
|
74 |
max_tokens=8000) # Limit the response length
|
75 |
-
|
76 |
os.environ['ANTHROPIC_API_KEY'] = key
|
77 |
return ChatAnthropic(model='claude-3-5-sonnet-20240620') # Limit the response length
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
|
80 |
# Function to generate an HTML table from the summary object
|
@@ -96,11 +109,19 @@ def generate_timeline_html(timeline):
|
|
96 |
for idx, tline in timeline.iterrows():
|
97 |
if idx % 2 == 0:
|
98 |
rows.append(Li(Div(File("./assets/circle.svg"), cls = "timeline-middle"),
|
99 |
-
Div(Time(tline['TimeStr'],
|
|
|
|
|
|
|
|
|
100 |
Hr()))
|
101 |
else:
|
102 |
rows.append(Li(Div(File("./assets/circle.svg"), cls = "timeline-middle"),
|
103 |
-
Div(Time(tline['TimeStr'],
|
|
|
|
|
|
|
|
|
104 |
Hr()))
|
105 |
|
106 |
return Ul(*rows, cls="timeline timeline-vertical")
|
@@ -139,16 +160,26 @@ def get_timeline_df(result):
|
|
139 |
return df
|
140 |
|
141 |
# Placeholder function for Q&A generation
|
142 |
-
def generate_timeline(topic, llm):
|
143 |
# This function will be implemented later
|
144 |
# For now, return a sample DataFrame
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
-
wikipedia = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper())
|
147 |
wiki_content = wikipedia.run(topic)
|
|
|
|
|
|
|
148 |
|
149 |
chain = event_prompt | llm | parser
|
150 |
|
151 |
-
result = chain.invoke({"context" : wiki_content
|
|
|
|
|
152 |
|
153 |
try:
|
154 |
# Parse the output using PydanticOutputParser
|
@@ -178,7 +209,7 @@ def getConfigForm():
|
|
178 |
),
|
179 |
Div(
|
180 |
Span(Strong('Model: '), cls ="badge"),
|
181 |
-
Select(Option("OpenAI"), Option("Anthropic"), id="model", cls = 'select w-full max-w-xs')
|
182 |
),
|
183 |
Div(
|
184 |
Span(Strong('Topic for timeline (Person/Organization/Event): '), cls ="badge"),
|
@@ -191,6 +222,10 @@ def getConfigForm():
|
|
191 |
cls = "input w-full max-w-xs",
|
192 |
placeholder = "Type here")
|
193 |
),
|
|
|
|
|
|
|
|
|
194 |
Div(
|
195 |
Button("Generate Timeline", cls = 'btn')
|
196 |
),
|
@@ -231,7 +266,9 @@ async def post(d:dict):
|
|
231 |
model = getModel(d['model'], d['secret'])
|
232 |
|
233 |
# Perform one-pass summarization
|
234 |
-
timeline_df = generate_timeline(d['topic'],
|
|
|
|
|
235 |
#qas = pd.read_csv("results_tesla.csv")
|
236 |
|
237 |
timeline_df.head(10)
|
|
|
4 |
import json
|
5 |
import pandas as pd
|
6 |
import traceback
|
7 |
+
import wikipedia
|
8 |
from datetime import datetime
|
9 |
from typing import Literal
|
10 |
from pydantic_core import from_json
|
|
|
17 |
from langchain_anthropic import ChatAnthropic
|
18 |
from pydantic import BaseModel, Field, ValidationError
|
19 |
from langchain_openai import ChatOpenAI
|
20 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
21 |
from fasthtml.common import *
|
22 |
from fasthtml.components import Svg
|
23 |
from langchain_community.utilities.wikipedia import WikipediaAPIWrapper
|
|
|
38 |
sentiment: Literal["Positive", "Negative"] = Field(..., description="Categorization of the event sentiment")
|
39 |
|
40 |
class EventResponse(BaseModel):
|
41 |
+
events: List[Event] = Field(min_length=10, max_length=20, description="List of events extracted from the context")
|
42 |
|
43 |
# Set up the Pydantic output parser
|
44 |
parser = PydanticOutputParser(pydantic_object=EventResponse)
|
|
|
46 |
# LangChain prompt template with format instructions
|
47 |
event_extraction_template = """
|
48 |
Extract the time based informations or events from the context and return a list of events with time, event description and event sentiment type whether it was positive or negative event.
|
49 |
+
The context may contain information about people, organization or any other entity.
|
50 |
|
51 |
<context>
|
52 |
{context}
|
|
|
58 |
{format_instructions}
|
59 |
</schema>
|
60 |
|
61 |
+
Must ensure the event belongs to the topic {topic} and try to get at least {numevents} unique events possible from the context.
|
62 |
+
|
63 |
Output:
|
64 |
"""
|
65 |
|
|
|
71 |
|
72 |
# Function to get the appropriate language model based on user selection
|
73 |
def getModel(model, key):
|
74 |
+
if(model == 'OpenAI Gpt-o'):
|
75 |
os.environ['OPENAI_API_KEY'] = key
|
76 |
return ChatOpenAI(temperature=0, # Set to 0 for deterministic output
|
77 |
model="gpt-4o-2024-08-06", # Using the GPT-4 Turbo model
|
78 |
max_tokens=8000) # Limit the response length
|
79 |
+
elif (model == 'Anthropic Claude'):
|
80 |
os.environ['ANTHROPIC_API_KEY'] = key
|
81 |
return ChatAnthropic(model='claude-3-5-sonnet-20240620') # Limit the response length
|
82 |
+
else:
|
83 |
+
os.environ['GOOGLE_API_KEY'] = key
|
84 |
+
return ChatGoogleGenerativeAI(
|
85 |
+
model="gemini-1.5-pro",
|
86 |
+
temperature=0,
|
87 |
+
max_tokens=8000,
|
88 |
+
max_retries=2,
|
89 |
+
)
|
90 |
+
|
91 |
|
92 |
|
93 |
# Function to generate an HTML table from the summary object
|
|
|
109 |
for idx, tline in timeline.iterrows():
|
110 |
if idx % 2 == 0:
|
111 |
rows.append(Li(Div(File("./assets/circle.svg"), cls = "timeline-middle"),
|
112 |
+
Div(Time(tline['TimeStr'],
|
113 |
+
cls = "font-mono italic"),
|
114 |
+
Div(tline['Event'],
|
115 |
+
cls = 'text-lg font-black'),
|
116 |
+
cls = "timeline-start mb-10 md:text-end"),
|
117 |
Hr()))
|
118 |
else:
|
119 |
rows.append(Li(Div(File("./assets/circle.svg"), cls = "timeline-middle"),
|
120 |
+
Div(Time(tline['TimeStr'],
|
121 |
+
cls = "font-mono italic"),
|
122 |
+
Div(tline['Event'],
|
123 |
+
cls = 'text-lg font-black'),
|
124 |
+
cls = "timeline-end mb-10"),
|
125 |
Hr()))
|
126 |
|
127 |
return Ul(*rows, cls="timeline timeline-vertical")
|
|
|
160 |
return df
|
161 |
|
162 |
# Placeholder function for Q&A generation
|
163 |
+
def generate_timeline(topic, numevents, llm):
|
164 |
# This function will be implemented later
|
165 |
# For now, return a sample DataFrame
|
166 |
+
|
167 |
+
# titles = wikipedia.search(topic, results = 1)
|
168 |
+
# page = wikipedia.page(titles[0])
|
169 |
+
# wiki_content = page.content
|
170 |
+
|
171 |
|
172 |
+
wikipedia = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=5000))
|
173 |
wiki_content = wikipedia.run(topic)
|
174 |
+
|
175 |
+
print(f"wiki_content: {wiki_content}")
|
176 |
+
# print(f"wiki_artifact: {wiki_artifact}")
|
177 |
|
178 |
chain = event_prompt | llm | parser
|
179 |
|
180 |
+
result = chain.invoke({"context" : wiki_content,
|
181 |
+
"topic": topic,
|
182 |
+
"numevents": numevents})
|
183 |
|
184 |
try:
|
185 |
# Parse the output using PydanticOutputParser
|
|
|
209 |
),
|
210 |
Div(
|
211 |
Span(Strong('Model: '), cls ="badge"),
|
212 |
+
Select(Option("OpenAI Gpt-4o"), Option("Anthropic Claude"), Option("Google Gemini"), id="model", cls = 'select w-full max-w-xs')
|
213 |
),
|
214 |
Div(
|
215 |
Span(Strong('Topic for timeline (Person/Organization/Event): '), cls ="badge"),
|
|
|
222 |
cls = "input w-full max-w-xs",
|
223 |
placeholder = "Type here")
|
224 |
),
|
225 |
+
Div(
|
226 |
+
Span(Strong('How many events: '), cls ="badge"),
|
227 |
+
Select(Option("5"), Option("10"), Option("20"), Option("30"), id="numevents", cls = 'select w-full max-w-xs')
|
228 |
+
),
|
229 |
Div(
|
230 |
Button("Generate Timeline", cls = 'btn')
|
231 |
),
|
|
|
266 |
model = getModel(d['model'], d['secret'])
|
267 |
|
268 |
# Perform one-pass summarization
|
269 |
+
timeline_df = generate_timeline(d['topic'],
|
270 |
+
d['numevents'],
|
271 |
+
model)
|
272 |
#qas = pd.read_csv("results_tesla.csv")
|
273 |
|
274 |
timeline_df.head(10)
|
timeline.csv
CHANGED
@@ -1,21 +1,16 @@
|
|
1 |
,index,Time,Event,Sentiment,TimeStr
|
2 |
-
0,
|
3 |
-
1,
|
4 |
-
2,
|
5 |
-
3,
|
6 |
-
4,
|
7 |
-
5,
|
8 |
-
6,
|
9 |
-
7,
|
10 |
-
8,
|
11 |
-
9,
|
12 |
-
10,
|
13 |
-
11,
|
14 |
-
12,
|
15 |
-
13,
|
16 |
-
14,
|
17 |
-
15,13,2018-05-27 00:00:00+00:00,CSK won the IPL for the third time under Dhoni.,Positive,27/05/2018
|
18 |
-
16,5,2018-09-28 00:00:00+00:00,Dhoni was part of the 2018 Asia Cup winning squad.,Positive,28/09/2018
|
19 |
-
17,10,2019-07-10 00:00:00+00:00,Dhoni retired from international limited-overs cricket.,Negative,10/07/2019
|
20 |
-
18,14,2021-10-15 00:00:00+00:00,CSK won the IPL for the fourth time with Dhoni.,Positive,15/10/2021
|
21 |
-
19,15,2023-05-29 00:00:00+00:00,CSK won the IPL for the fifth time under Dhoni.,Positive,29/05/2023
|
|
|
1 |
,index,Time,Event,Sentiment,TimeStr
|
2 |
+
0,0,1981-07-07 00:00:00+00:00,MS Dhoni is born,Positive,07/07/1981
|
3 |
+
1,1,1999-01-01 00:00:00+00:00,Dhoni makes his first class debut for Bihar,Positive,01/01/1999
|
4 |
+
2,2,2004-12-23 00:00:00+00:00,Dhoni makes his debut for the Indian cricket team in an ODI against Bangladesh,Positive,23/12/2004
|
5 |
+
3,3,2005-12-01 00:00:00+00:00,Dhoni plays his first test match against Sri Lanka,Positive,01/12/2005
|
6 |
+
4,4,2007-01-01 00:00:00+00:00,Dhoni becomes captain of the ODI side,Positive,01/01/2007
|
7 |
+
5,5,2007-09-24 00:00:00+00:00,Dhoni leads India to victory in the ICC World Twenty20,Positive,24/09/2007
|
8 |
+
6,6,2008-01-01 00:00:00+00:00,Dhoni takes over as captain in all formats of cricket,Positive,01/01/2008
|
9 |
+
7,7,2008-01-01 00:00:00+00:00,Dhoni is awarded India's highest sport honor Major Dhyan Chand Khel Ratna Award,Positive,01/01/2008
|
10 |
+
8,8,2009-01-01 00:00:00+00:00,"Dhoni receives the Padma Shri, India's fourth highest civilian award",Positive,01/01/2009
|
11 |
+
9,10,2011-01-01 00:00:00+00:00,Dhoni is awarded honorary rank of Lieutenant Colonel in the Indian Territorial Army,Positive,01/01/2011
|
12 |
+
10,9,2011-04-02 00:00:00+00:00,Dhoni leads India to victory in the Cricket World Cup,Positive,02/04/2011
|
13 |
+
11,11,2013-06-23 00:00:00+00:00,Dhoni leads India to victory in the ICC Champions Trophy,Positive,23/06/2013
|
14 |
+
12,12,2014-12-30 00:00:00+00:00,Dhoni retires from test cricket,Negative,30/12/2014
|
15 |
+
13,13,2018-01-01 00:00:00+00:00,"Dhoni receives the Padma Bhushan, India's third highest civilian award",Positive,01/01/2018
|
16 |
+
14,14,2019-12-31 00:00:00+00:00,Dhoni retires from limited overs international cricket,Negative,31/12/2019
|
|
|
|
|
|
|
|
|
|