Manaranjan commited on
Commit
05caf50
·
verified ·
1 Parent(s): ab67d2e

deploy at 2024-08-21 10:24:01.130174

Browse files
Files changed (3) hide show
  1. config.ini +5 -0
  2. main.py +48 -11
  3. timeline.csv +15 -20
config.ini ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ [DEFAULT]
2
+ dataset_id = space-backup
3
+ db_dir = data
4
+ private_backup = True
5
+
main.py CHANGED
@@ -4,6 +4,7 @@ import os
4
  import json
5
  import pandas as pd
6
  import traceback
 
7
  from datetime import datetime
8
  from typing import Literal
9
  from pydantic_core import from_json
@@ -16,6 +17,7 @@ from langchain_openai import ChatOpenAI
16
  from langchain_anthropic import ChatAnthropic
17
  from pydantic import BaseModel, Field, ValidationError
18
  from langchain_openai import ChatOpenAI
 
19
  from fasthtml.common import *
20
  from fasthtml.components import Svg
21
  from langchain_community.utilities.wikipedia import WikipediaAPIWrapper
@@ -36,7 +38,7 @@ class Event(BaseModel):
36
  sentiment: Literal["Positive", "Negative"] = Field(..., description="Categorization of the event sentiment")
37
 
38
  class EventResponse(BaseModel):
39
- events: List[Event] = Field(min_length=10, max_length=30, description="List of events extracted from the context")
40
 
41
  # Set up the Pydantic output parser
42
  parser = PydanticOutputParser(pydantic_object=EventResponse)
@@ -44,7 +46,7 @@ parser = PydanticOutputParser(pydantic_object=EventResponse)
44
  # LangChain prompt template with format instructions
45
  event_extraction_template = """
46
  Extract the time based informations or events from the context and return a list of events with time, event description and event sentiment type whether it was positive or negative event.
47
- The context may contain information about people, organization or any other entity. Try to get detailed and unique list of events as possible.
48
 
49
  <context>
50
  {context}
@@ -56,6 +58,8 @@ The response must follow the following schema strictly. There will be penalty fo
56
  {format_instructions}
57
  </schema>
58
 
 
 
59
  Output:
60
  """
61
 
@@ -67,14 +71,23 @@ event_prompt = PromptTemplate(
67
 
68
  # Function to get the appropriate language model based on user selection
69
  def getModel(model, key):
70
- if(model == 'OpenAI'):
71
  os.environ['OPENAI_API_KEY'] = key
72
  return ChatOpenAI(temperature=0, # Set to 0 for deterministic output
73
  model="gpt-4o-2024-08-06", # Using the GPT-4 Turbo model
74
  max_tokens=8000) # Limit the response length
75
- else:
76
  os.environ['ANTHROPIC_API_KEY'] = key
77
  return ChatAnthropic(model='claude-3-5-sonnet-20240620') # Limit the response length
 
 
 
 
 
 
 
 
 
78
 
79
 
80
  # Function to generate an HTML table from the summary object
@@ -96,11 +109,19 @@ def generate_timeline_html(timeline):
96
  for idx, tline in timeline.iterrows():
97
  if idx % 2 == 0:
98
  rows.append(Li(Div(File("./assets/circle.svg"), cls = "timeline-middle"),
99
- Div(Time(tline['TimeStr'], cls = "font-mono italic"), Div(tline['Event'], cls = 'text-lg font-black'), cls = "timeline-start mb-10 md:text-end"),
 
 
 
 
100
  Hr()))
101
  else:
102
  rows.append(Li(Div(File("./assets/circle.svg"), cls = "timeline-middle"),
103
- Div(Time(tline['TimeStr'], cls = "font-mono italic"), Div(tline['Event'], cls = 'text-lg font-black'), cls = "timeline-end mb-10"),
 
 
 
 
104
  Hr()))
105
 
106
  return Ul(*rows, cls="timeline timeline-vertical")
@@ -139,16 +160,26 @@ def get_timeline_df(result):
139
  return df
140
 
141
  # Placeholder function for Q&A generation
142
- def generate_timeline(topic, llm):
143
  # This function will be implemented later
144
  # For now, return a sample DataFrame
 
 
 
 
 
145
 
146
- wikipedia = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper())
147
  wiki_content = wikipedia.run(topic)
 
 
 
148
 
149
  chain = event_prompt | llm | parser
150
 
151
- result = chain.invoke({"context" : wiki_content})
 
 
152
 
153
  try:
154
  # Parse the output using PydanticOutputParser
@@ -178,7 +209,7 @@ def getConfigForm():
178
  ),
179
  Div(
180
  Span(Strong('Model: '), cls ="badge"),
181
- Select(Option("OpenAI"), Option("Anthropic"), id="model", cls = 'select w-full max-w-xs')
182
  ),
183
  Div(
184
  Span(Strong('Topic for timeline (Person/Organization/Event): '), cls ="badge"),
@@ -191,6 +222,10 @@ def getConfigForm():
191
  cls = "input w-full max-w-xs",
192
  placeholder = "Type here")
193
  ),
 
 
 
 
194
  Div(
195
  Button("Generate Timeline", cls = 'btn')
196
  ),
@@ -231,7 +266,9 @@ async def post(d:dict):
231
  model = getModel(d['model'], d['secret'])
232
 
233
  # Perform one-pass summarization
234
- timeline_df = generate_timeline(d['topic'], model)
 
 
235
  #qas = pd.read_csv("results_tesla.csv")
236
 
237
  timeline_df.head(10)
 
4
  import json
5
  import pandas as pd
6
  import traceback
7
+ import wikipedia
8
  from datetime import datetime
9
  from typing import Literal
10
  from pydantic_core import from_json
 
17
  from langchain_anthropic import ChatAnthropic
18
  from pydantic import BaseModel, Field, ValidationError
19
  from langchain_openai import ChatOpenAI
20
+ from langchain_google_genai import ChatGoogleGenerativeAI
21
  from fasthtml.common import *
22
  from fasthtml.components import Svg
23
  from langchain_community.utilities.wikipedia import WikipediaAPIWrapper
 
38
  sentiment: Literal["Positive", "Negative"] = Field(..., description="Categorization of the event sentiment")
39
 
40
  class EventResponse(BaseModel):
41
+ events: List[Event] = Field(min_length=10, max_length=20, description="List of events extracted from the context")
42
 
43
  # Set up the Pydantic output parser
44
  parser = PydanticOutputParser(pydantic_object=EventResponse)
 
46
  # LangChain prompt template with format instructions
47
  event_extraction_template = """
48
  Extract the time based informations or events from the context and return a list of events with time, event description and event sentiment type whether it was positive or negative event.
49
+ The context may contain information about people, organization or any other entity.
50
 
51
  <context>
52
  {context}
 
58
  {format_instructions}
59
  </schema>
60
 
61
+ Must ensure the event belongs to the topic {topic} and try to get at least {numevents} unique events possible from the context.
62
+
63
  Output:
64
  """
65
 
 
71
 
72
  # Function to get the appropriate language model based on user selection
73
  def getModel(model, key):
74
+ if(model == 'OpenAI Gpt-o'):
75
  os.environ['OPENAI_API_KEY'] = key
76
  return ChatOpenAI(temperature=0, # Set to 0 for deterministic output
77
  model="gpt-4o-2024-08-06", # Using the GPT-4 Turbo model
78
  max_tokens=8000) # Limit the response length
79
+ elif (model == 'Anthropic Claude'):
80
  os.environ['ANTHROPIC_API_KEY'] = key
81
  return ChatAnthropic(model='claude-3-5-sonnet-20240620') # Limit the response length
82
+ else:
83
+ os.environ['GOOGLE_API_KEY'] = key
84
+ return ChatGoogleGenerativeAI(
85
+ model="gemini-1.5-pro",
86
+ temperature=0,
87
+ max_tokens=8000,
88
+ max_retries=2,
89
+ )
90
+
91
 
92
 
93
  # Function to generate an HTML table from the summary object
 
109
  for idx, tline in timeline.iterrows():
110
  if idx % 2 == 0:
111
  rows.append(Li(Div(File("./assets/circle.svg"), cls = "timeline-middle"),
112
+ Div(Time(tline['TimeStr'],
113
+ cls = "font-mono italic"),
114
+ Div(tline['Event'],
115
+ cls = 'text-lg font-black'),
116
+ cls = "timeline-start mb-10 md:text-end"),
117
  Hr()))
118
  else:
119
  rows.append(Li(Div(File("./assets/circle.svg"), cls = "timeline-middle"),
120
+ Div(Time(tline['TimeStr'],
121
+ cls = "font-mono italic"),
122
+ Div(tline['Event'],
123
+ cls = 'text-lg font-black'),
124
+ cls = "timeline-end mb-10"),
125
  Hr()))
126
 
127
  return Ul(*rows, cls="timeline timeline-vertical")
 
160
  return df
161
 
162
  # Placeholder function for Q&A generation
163
+ def generate_timeline(topic, numevents, llm):
164
  # This function will be implemented later
165
  # For now, return a sample DataFrame
166
+
167
+ # titles = wikipedia.search(topic, results = 1)
168
+ # page = wikipedia.page(titles[0])
169
+ # wiki_content = page.content
170
+
171
 
172
+ wikipedia = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=5000))
173
  wiki_content = wikipedia.run(topic)
174
+
175
+ print(f"wiki_content: {wiki_content}")
176
+ # print(f"wiki_artifact: {wiki_artifact}")
177
 
178
  chain = event_prompt | llm | parser
179
 
180
+ result = chain.invoke({"context" : wiki_content,
181
+ "topic": topic,
182
+ "numevents": numevents})
183
 
184
  try:
185
  # Parse the output using PydanticOutputParser
 
209
  ),
210
  Div(
211
  Span(Strong('Model: '), cls ="badge"),
212
+ Select(Option("OpenAI Gpt-4o"), Option("Anthropic Claude"), Option("Google Gemini"), id="model", cls = 'select w-full max-w-xs')
213
  ),
214
  Div(
215
  Span(Strong('Topic for timeline (Person/Organization/Event): '), cls ="badge"),
 
222
  cls = "input w-full max-w-xs",
223
  placeholder = "Type here")
224
  ),
225
+ Div(
226
+ Span(Strong('How many events: '), cls ="badge"),
227
+ Select(Option("5"), Option("10"), Option("20"), Option("30"), id="numevents", cls = 'select w-full max-w-xs')
228
+ ),
229
  Div(
230
  Button("Generate Timeline", cls = 'btn')
231
  ),
 
266
  model = getModel(d['model'], d['secret'])
267
 
268
  # Perform one-pass summarization
269
+ timeline_df = generate_timeline(d['topic'],
270
+ d['numevents'],
271
+ model)
272
  #qas = pd.read_csv("results_tesla.csv")
273
 
274
  timeline_df.head(10)
timeline.csv CHANGED
@@ -1,21 +1,16 @@
1
  ,index,Time,Event,Sentiment,TimeStr
2
- 0,6,1999-01-01 00:00:00+00:00,Dhoni made his first-class debut for Bihar.,Positive,01/01/1999
3
- 1,7,2004-12-23 00:00:00+00:00,Dhoni debuted for the Indian cricket team in an ODI.,Positive,23/12/2004
4
- 2,0,2007-09-24 00:00:00+00:00,India won the 2007 ICC World Twenty20 under Dhoni's captaincy.,Positive,24/09/2007
5
- 3,18,2008-01-01 00:00:00+00:00,Dhoni received the Major Dhyan Chand Khel Ratna Award.,Positive,01/01/2008
6
- 4,8,2008-01-01 00:00:00+00:00,Dhoni became captain of the Indian cricket team in all formats.,Positive,01/01/2008
7
- 5,11,2010-04-25 00:00:00+00:00,CSK won the IPL under Dhoni's captaincy.,Positive,25/04/2010
8
- 6,3,2010-06-24 00:00:00+00:00,India won the Asia Cup in 2010 under Dhoni's captaincy.,Positive,24/06/2010
9
- 7,16,2010-09-26 00:00:00+00:00,CSK won the Champions League T20 under Dhoni.,Positive,26/09/2010
10
- 8,19,2011-01-01 00:00:00+00:00,Dhoni received honorary rank of Lieutenant Colonel.,Positive,01/01/2011
11
- 9,1,2011-04-02 00:00:00+00:00,India won the 2011 Cricket World Cup under Dhoni's leadership.,Positive,02/04/2011
12
- 10,12,2011-05-28 00:00:00+00:00,CSK won the IPL again with Dhoni as captain.,Positive,28/05/2011
13
- 11,2,2013-06-23 00:00:00+00:00,India won the 2013 ICC Champions Trophy with Dhoni as captain.,Positive,23/06/2013
14
- 12,17,2014-10-04 00:00:00+00:00,CSK won the Champions League T20 again with Dhoni.,Positive,04/10/2014
15
- 13,9,2014-12-30 00:00:00+00:00,Dhoni retired from Test cricket.,Negative,30/12/2014
16
- 14,4,2016-03-06 00:00:00+00:00,India won the Asia Cup in 2016 with Dhoni as captain.,Positive,06/03/2016
17
- 15,13,2018-05-27 00:00:00+00:00,CSK won the IPL for the third time under Dhoni.,Positive,27/05/2018
18
- 16,5,2018-09-28 00:00:00+00:00,Dhoni was part of the 2018 Asia Cup winning squad.,Positive,28/09/2018
19
- 17,10,2019-07-10 00:00:00+00:00,Dhoni retired from international limited-overs cricket.,Negative,10/07/2019
20
- 18,14,2021-10-15 00:00:00+00:00,CSK won the IPL for the fourth time with Dhoni.,Positive,15/10/2021
21
- 19,15,2023-05-29 00:00:00+00:00,CSK won the IPL for the fifth time under Dhoni.,Positive,29/05/2023
 
1
  ,index,Time,Event,Sentiment,TimeStr
2
+ 0,0,1981-07-07 00:00:00+00:00,MS Dhoni is born,Positive,07/07/1981
3
+ 1,1,1999-01-01 00:00:00+00:00,Dhoni makes his first class debut for Bihar,Positive,01/01/1999
4
+ 2,2,2004-12-23 00:00:00+00:00,Dhoni makes his debut for the Indian cricket team in an ODI against Bangladesh,Positive,23/12/2004
5
+ 3,3,2005-12-01 00:00:00+00:00,Dhoni plays his first test match against Sri Lanka,Positive,01/12/2005
6
+ 4,4,2007-01-01 00:00:00+00:00,Dhoni becomes captain of the ODI side,Positive,01/01/2007
7
+ 5,5,2007-09-24 00:00:00+00:00,Dhoni leads India to victory in the ICC World Twenty20,Positive,24/09/2007
8
+ 6,6,2008-01-01 00:00:00+00:00,Dhoni takes over as captain in all formats of cricket,Positive,01/01/2008
9
+ 7,7,2008-01-01 00:00:00+00:00,Dhoni is awarded India's highest sport honor Major Dhyan Chand Khel Ratna Award,Positive,01/01/2008
10
+ 8,8,2009-01-01 00:00:00+00:00,"Dhoni receives the Padma Shri, India's fourth highest civilian award",Positive,01/01/2009
11
+ 9,10,2011-01-01 00:00:00+00:00,Dhoni is awarded honorary rank of Lieutenant Colonel in the Indian Territorial Army,Positive,01/01/2011
12
+ 10,9,2011-04-02 00:00:00+00:00,Dhoni leads India to victory in the Cricket World Cup,Positive,02/04/2011
13
+ 11,11,2013-06-23 00:00:00+00:00,Dhoni leads India to victory in the ICC Champions Trophy,Positive,23/06/2013
14
+ 12,12,2014-12-30 00:00:00+00:00,Dhoni retires from test cricket,Negative,30/12/2014
15
+ 13,13,2018-01-01 00:00:00+00:00,"Dhoni receives the Padma Bhushan, India's third highest civilian award",Positive,01/01/2018
16
+ 14,14,2019-12-31 00:00:00+00:00,Dhoni retires from limited overs international cricket,Negative,31/12/2019