Spaces:
Build error
Build error
import gradio as gr | |
from transformers import QwenProcessor, QwenForVisionAndLanguageGeneration | |
import torch | |
# Load the Qwen-VL model and processor (on CPU) | |
processor = QwenProcessor.from_pretrained("Qwen/Qwen-VL") | |
model = QwenForVisionAndLanguageGeneration.from_pretrained("Qwen/Qwen-VL") | |
# Define the function to process the video and return analysis | |
def analyze_exercise(video_path): | |
# Create the message prompt for exercise analysis | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "video", | |
}, | |
{ | |
"type": "text", | |
"text": ( | |
"Analyze the exercise shown in the video. " | |
"Please provide details about the exercise type, the number of repetitions, " | |
"and an estimate of calories burned during the video." | |
) | |
} | |
] | |
} | |
] | |
# Generate the prompt and inputs | |
text_prompt = processor.apply_chat_template(messages, add_generation_prompt=True) | |
# Prepare inputs for the model with the uploaded video | |
inputs = processor( | |
text=[text_prompt], | |
videos=[video_path], | |
padding=True, | |
return_tensors="pt" | |
) | |
# Generate model output | |
output_ids = model.generate(**inputs, max_new_tokens=1024) | |
# Decode and return the text output | |
output_text = processor.batch_decode( | |
output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True | |
) | |
return output_text[0] | |
# Set up the Gradio interface | |
with gr.Blocks() as app: | |
gr.Markdown("## Exercise Video Analyzer") | |
gr.Markdown("Upload a video to analyze the exercise, count repetitions, and estimate calories burned.") | |
video_input = gr.Video(label="Upload Exercise Video") | |
text_output = gr.Textbox(label="Exercise Analysis") | |
analyze_button = gr.Button("Analyze Exercise") | |
# When analyze button is clicked, call the analyze_exercise function | |
analyze_button.click(analyze_exercise, inputs=video_input, outputs=text_output) | |
# Launch the app | |
app.launch() | |