Spaces:
Sleeping
Sleeping
import os | |
from PyPDF2 import PdfReader | |
import pandas as pd | |
from dotenv import load_dotenv | |
import groq | |
import json | |
from datetime import datetime | |
from sklearn.decomposition import NMF | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
import random | |
class TweetDatasetProcessor: | |
def __init__(self): | |
load_dotenv() | |
self.groq_client = groq.Groq(api_key=os.getenv('Groq_api')) | |
self.tweets = [] | |
self.personality_profile = {} | |
def extract_text_from_pdf(self, pdf_path): | |
"""Extract text content from PDF file.""" | |
reader = PdfReader(pdf_path) | |
text = "" | |
for page in reader.pages: | |
text += page.extract_text() | |
return text | |
def process_pdf_content(self, text): | |
"""Process PDF content and clean extracted tweets.""" | |
lines = text.split('\n') | |
clean_tweets = [] | |
buffer = "" | |
for line in lines: | |
line = line.strip() | |
if not line: | |
if buffer: # End of a tweet | |
clean_tweets.append(buffer.strip()) | |
buffer = "" | |
elif line.startswith('http'): # Skip URLs | |
continue | |
else: | |
buffer += " " + line # Append lines to form complete tweets | |
if buffer: # Add the last tweet | |
clean_tweets.append(buffer.strip()) | |
# Build the tweet list with metadata | |
self.tweets = [ | |
{ | |
'content': tweet, | |
'timestamp': datetime.now(), # Assign dummy timestamp | |
'mentions': self._extract_mentions(tweet), | |
'hashtags': self._extract_hashtags(tweet) | |
} | |
for tweet in clean_tweets | |
] | |
# Save the processed tweets to a CSV | |
df = pd.DataFrame(self.tweets) | |
df.to_csv('processed_tweets.csv', index=False) | |
return df | |
def _extract_timestamp(self, text): | |
"""Extract timestamp if present in tweet.""" | |
return None # Implement timestamp extraction logic if needed | |
def _extract_mentions(self, text): | |
"""Extract mentioned users from tweet.""" | |
return [word for word in text.split() if word.startswith('@')] | |
def _extract_hashtags(self, text): | |
"""Extract hashtags from tweet.""" | |
return [word for word in text.split() if word.startswith('#')] | |
def analyze_personality(self): | |
"""Comprehensive personality analysis.""" | |
all_tweets = [tweet['content'] for tweet in self.tweets] | |
analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets. Analyze: | |
Core beliefs, emotional tendencies, cognitive patterns, etc. | |
Tweets for analysis: | |
{json.dumps(all_tweets[:5], indent=2)} # Further reduced number of tweets | |
""" | |
response = self.groq_client.chat.completions.create( | |
messages=[ | |
{"role": "system", "content": "You are an expert psychologist."}, | |
{"role": "user", "content": analysis_prompt}, | |
], | |
model="llama-3.1-70b-versatile", | |
temperature=0.1, | |
) | |
self.personality_profile = response.choices[0].message.content | |
return self.personality_profile | |
def analyze_topics(self, n_topics=3): # Reduced the number of topics | |
"""Extract and identify different topics the author has tweeted about.""" | |
all_tweets = [tweet['content'] for tweet in self.tweets] | |
vectorizer = TfidfVectorizer(stop_words='english') | |
tfidf_matrix = vectorizer.fit_transform(all_tweets) | |
nmf_model = NMF(n_components=n_topics, random_state=1) | |
nmf_model.fit(tfidf_matrix) | |
topics = [] | |
for topic_idx, topic in enumerate(nmf_model.components_): | |
topic_words = [vectorizer.get_feature_names_out()[i] for i in topic.argsort()[:-n_topics - 1:-1]] | |
topics.append(" ".join(topic_words)) | |
# Remove duplicates in topics | |
topics = list(set(topics)) | |
return topics | |
def count_tokens(self, text): | |
"""Estimate the number of tokens in the given text.""" | |
# A basic token count estimation (approximate) | |
return len(text.split()) | |
def generate_tweet(self, context=""): | |
"""Generate a new tweet based on personality profile and optional context.""" | |
# Extract historical topics and add them to additional contexts | |
historical_topics = self.analyze_topics(n_topics=3) # Reduced number of topics | |
additional_contexts = historical_topics + [ | |
"Comment on a recent technological advancement.", | |
"Share a motivational thought.", | |
"Discuss a current trending topic.", | |
"Reflect on a past experience.", | |
"Provide advice to followers." | |
] | |
# Randomly select multiple contexts to increase diversity | |
selected_contexts = random.sample(additional_contexts, min(3, len(additional_contexts))) | |
# Randomly sample tweets across different time periods to avoid repetition of topics | |
tweet_sample = random.sample(self.tweets, min(5, len(self.tweets))) # Further reduced number of tweets | |
all_tweets = [tweet['content'] for tweet in tweet_sample] | |
# If personality profile is too long, truncate it (adjust length as needed) | |
personality_profile_excerpt = self.personality_profile[:400] # Further truncation | |
# Combine everything and check token count | |
prompt = f"""Based on this personality profile: | |
{personality_profile_excerpt} | |
Current context or topic (if any): | |
{context} | |
Additionally, consider these contexts to increase diversity: | |
{', '.join(selected_contexts)} | |
Tweets for context: | |
{', '.join(all_tweets)} | |
**Only generate the tweet. Do not include analysis, explanation, or any other content.** | |
""" | |
token_count = self.count_tokens(prompt) | |
if token_count > 6000: # Limit to 6000 tokens (adjust as needed) | |
# Further truncate the tweet and topics if token limit is exceeded | |
all_tweets = all_tweets[:3] # Reduce the number of tweets used | |
prompt = f"""Based on this personality profile: | |
{personality_profile_excerpt} | |
Current context or topic (if any): | |
{context} | |
Additionally, consider these contexts to increase diversity: | |
{', '.join(selected_contexts)} | |
Tweets for context: | |
{', '.join(all_tweets)} | |
**Only generate the tweet. Do not include analysis, explanation, or any other content.** | |
""" | |
try: | |
response = self.groq_client.chat.completions.create( | |
messages=[ | |
{"role": "system", "content": "You are an expert in replicating writing and thinking patterns."}, | |
{"role": "user", "content": prompt}, | |
], | |
model="llama-3.1-70b-versatile", | |
temperature=1.0, # Increased temperature for more diversity | |
max_tokens=150, | |
) | |
tweet = response.choices[0].message.content | |
# Ensure the response only contains the tweet text, and nothing else. | |
return tweet.strip().split("\n")[0] # Only return the first line (tweet) | |
except Exception as e: | |
print(f"Error generating tweet: {e}") | |
return "Error generating tweet" | |