Spaces:
Sleeping
Sleeping
Update tweet_analyzer.py
Browse files- tweet_analyzer.py +72 -68
tweet_analyzer.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import os
|
2 |
from PyPDF2 import PdfReader
|
3 |
import pandas as pd
|
4 |
from dotenv import load_dotenv
|
@@ -10,6 +10,7 @@ from sklearn.feature_extraction.text import TfidfVectorizer
|
|
10 |
from sklearn.metrics.pairwise import cosine_similarity
|
11 |
from sklearn.cluster import KMeans
|
12 |
import random
|
|
|
13 |
|
14 |
class TweetDatasetProcessor:
|
15 |
def __init__(self):
|
@@ -18,6 +19,7 @@ class TweetDatasetProcessor:
|
|
18 |
self.tweets = []
|
19 |
self.personality_profile = {}
|
20 |
self.vectorizer = TfidfVectorizer(stop_words='english')
|
|
|
21 |
|
22 |
def extract_text_from_pdf(self, pdf_path):
|
23 |
"""Extract text content from PDF file."""
|
@@ -29,40 +31,33 @@ class TweetDatasetProcessor:
|
|
29 |
|
30 |
def process_pdf_content(self, text):
|
31 |
"""Process PDF content and clean extracted tweets."""
|
|
|
|
|
|
|
32 |
lines = text.split('\n')
|
33 |
-
clean_tweets =
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
if not line:
|
39 |
-
if buffer: # End of a tweet
|
40 |
-
clean_tweets.append(buffer.strip())
|
41 |
-
buffer = ""
|
42 |
-
elif line.startswith('http'): # Skip URLs
|
43 |
-
continue
|
44 |
-
else:
|
45 |
-
buffer += " " + line # Append lines to form complete tweets
|
46 |
-
|
47 |
-
if buffer: # Add the last tweet
|
48 |
-
clean_tweets.append(buffer.strip())
|
49 |
-
|
50 |
-
# Build the tweet list with metadata
|
51 |
-
self.tweets = [
|
52 |
-
{
|
53 |
-
'content': tweet,
|
54 |
-
'timestamp': datetime.now(), # Assign dummy timestamp
|
55 |
-
'mentions': self._extract_mentions(tweet),
|
56 |
-
'hashtags': self._extract_hashtags(tweet)
|
57 |
-
}
|
58 |
-
for tweet in clean_tweets
|
59 |
-
]
|
60 |
|
61 |
# Save the processed tweets to a CSV
|
62 |
df = pd.DataFrame(self.tweets)
|
63 |
df.to_csv('processed_tweets.csv', index=False)
|
64 |
return df
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
def _extract_mentions(self, text):
|
67 |
"""Extract mentioned users from tweet."""
|
68 |
return [word for word in text.split() if word.startswith('@')]
|
@@ -74,6 +69,9 @@ class TweetDatasetProcessor:
|
|
74 |
def categorize_tweets(self):
|
75 |
"""Cluster tweets into categories using KMeans."""
|
76 |
all_tweets = [tweet['content'] for tweet in self.tweets]
|
|
|
|
|
|
|
77 |
tfidf_matrix = self.vectorizer.fit_transform(all_tweets)
|
78 |
kmeans = KMeans(n_clusters=5, random_state=1)
|
79 |
kmeans.fit(tfidf_matrix)
|
@@ -82,30 +80,38 @@ class TweetDatasetProcessor:
|
|
82 |
tweet['category'] = f"Category {kmeans.labels_[i]}"
|
83 |
return pd.DataFrame(self.tweets)
|
84 |
|
85 |
-
def analyze_personality(self):
|
86 |
-
"""Comprehensive personality analysis using
|
87 |
-
|
88 |
-
|
|
|
|
|
89 |
analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets:
|
90 |
Core beliefs, emotional tendencies, cognitive patterns, etc.
|
91 |
Tweets for analysis:
|
92 |
{json.dumps(all_tweets, indent=2)}
|
93 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
messages=[
|
97 |
-
{"role": "system", "content": "You are an expert psychologist."},
|
98 |
-
{"role": "user", "content": analysis_prompt},
|
99 |
-
],
|
100 |
-
model="llama-3.1-70b-versatile",
|
101 |
-
temperature=0.1,
|
102 |
-
)
|
103 |
-
self.personality_profile = response.choices[0].message.content
|
104 |
-
return self.personality_profile
|
105 |
-
|
106 |
-
def analyze_topics(self, n_topics=5):
|
107 |
"""Extract and identify different topics the author has tweeted about."""
|
108 |
all_tweets = [tweet['content'] for tweet in self.tweets]
|
|
|
|
|
|
|
|
|
109 |
tfidf_matrix = self.vectorizer.fit_transform(all_tweets)
|
110 |
nmf_model = NMF(n_components=n_topics, random_state=1)
|
111 |
nmf_model.fit(tfidf_matrix)
|
@@ -120,34 +126,33 @@ class TweetDatasetProcessor:
|
|
120 |
"""Estimate the number of tokens in the given text."""
|
121 |
return len(text.split())
|
122 |
|
123 |
-
def generate_tweet(self, context=""):
|
124 |
-
"""Generate a new tweet
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
personality_profile_excerpt = self.personality_profile[:400]
|
142 |
|
|
|
143 |
prompt = f"""Based on this personality profile:
|
144 |
{personality_profile_excerpt}
|
145 |
Current context or topic (if any):
|
146 |
{context}
|
147 |
-
Additionally, consider these contexts to increase diversity:
|
148 |
-
{', '.join(selected_contexts)}
|
149 |
Tweets for context:
|
150 |
-
{', '.join(
|
151 |
**Only generate the tweet. Do not include analysis, explanation, or any other content.**
|
152 |
"""
|
153 |
try:
|
@@ -163,5 +168,4 @@ class TweetDatasetProcessor:
|
|
163 |
tweet = response.choices[0].message.content.strip()
|
164 |
return tweet
|
165 |
except Exception as e:
|
166 |
-
|
167 |
-
return "Error generating tweet"
|
|
|
1 |
+
import os
|
2 |
from PyPDF2 import PdfReader
|
3 |
import pandas as pd
|
4 |
from dotenv import load_dotenv
|
|
|
10 |
from sklearn.metrics.pairwise import cosine_similarity
|
11 |
from sklearn.cluster import KMeans
|
12 |
import random
|
13 |
+
from joblib import Parallel, delayed
|
14 |
|
15 |
class TweetDatasetProcessor:
|
16 |
def __init__(self):
|
|
|
19 |
self.tweets = []
|
20 |
self.personality_profile = {}
|
21 |
self.vectorizer = TfidfVectorizer(stop_words='english')
|
22 |
+
self.used_tweets = set() # Track used tweets to avoid repetition
|
23 |
|
24 |
def extract_text_from_pdf(self, pdf_path):
|
25 |
"""Extract text content from PDF file."""
|
|
|
31 |
|
32 |
def process_pdf_content(self, text):
|
33 |
"""Process PDF content and clean extracted tweets."""
|
34 |
+
if not text.strip():
|
35 |
+
raise ValueError("The uploaded PDF appears to be empty.")
|
36 |
+
|
37 |
lines = text.split('\n')
|
38 |
+
clean_tweets = Parallel(n_jobs=-1)(delayed(self._process_line)(line) for line in lines)
|
39 |
+
self.tweets = [tweet for tweet in clean_tweets if tweet]
|
40 |
+
|
41 |
+
if not self.tweets:
|
42 |
+
raise ValueError("No tweets were extracted from the PDF. Ensure the content is properly formatted.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# Save the processed tweets to a CSV
|
45 |
df = pd.DataFrame(self.tweets)
|
46 |
df.to_csv('processed_tweets.csv', index=False)
|
47 |
return df
|
48 |
|
49 |
+
def _process_line(self, line):
|
50 |
+
"""Process a single line in parallel."""
|
51 |
+
line = line.strip()
|
52 |
+
if not line or line.startswith('http'): # Skip empty lines and URLs
|
53 |
+
return None
|
54 |
+
return {
|
55 |
+
'content': line,
|
56 |
+
'timestamp': datetime.now(),
|
57 |
+
'mentions': self._extract_mentions(line),
|
58 |
+
'hashtags': self._extract_hashtags(line)
|
59 |
+
}
|
60 |
+
|
61 |
def _extract_mentions(self, text):
|
62 |
"""Extract mentioned users from tweet."""
|
63 |
return [word for word in text.split() if word.startswith('@')]
|
|
|
69 |
def categorize_tweets(self):
|
70 |
"""Cluster tweets into categories using KMeans."""
|
71 |
all_tweets = [tweet['content'] for tweet in self.tweets]
|
72 |
+
if not all_tweets:
|
73 |
+
raise ValueError("No tweets available for clustering.")
|
74 |
+
|
75 |
tfidf_matrix = self.vectorizer.fit_transform(all_tweets)
|
76 |
kmeans = KMeans(n_clusters=5, random_state=1)
|
77 |
kmeans.fit(tfidf_matrix)
|
|
|
80 |
tweet['category'] = f"Category {kmeans.labels_[i]}"
|
81 |
return pd.DataFrame(self.tweets)
|
82 |
|
83 |
+
def analyze_personality(self, max_tweets=50):
|
84 |
+
"""Comprehensive personality analysis using a limited subset of tweets."""
|
85 |
+
if not self.tweets:
|
86 |
+
raise ValueError("No tweets available for personality analysis.")
|
87 |
+
|
88 |
+
all_tweets = [tweet['content'] for tweet in self.tweets][:max_tweets]
|
89 |
analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets:
|
90 |
Core beliefs, emotional tendencies, cognitive patterns, etc.
|
91 |
Tweets for analysis:
|
92 |
{json.dumps(all_tweets, indent=2)}
|
93 |
"""
|
94 |
+
try:
|
95 |
+
response = self.groq_client.chat.completions.create(
|
96 |
+
messages=[
|
97 |
+
{"role": "system", "content": "You are an expert psychologist."},
|
98 |
+
{"role": "user", "content": analysis_prompt},
|
99 |
+
],
|
100 |
+
model="llama-3.1-70b-versatile",
|
101 |
+
temperature=0.1,
|
102 |
+
)
|
103 |
+
self.personality_profile = response.choices[0].message.content
|
104 |
+
return self.personality_profile
|
105 |
+
except Exception as e:
|
106 |
+
return f"Error during personality analysis: {str(e)}"
|
107 |
|
108 |
+
def analyze_topics(self, n_topics=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
"""Extract and identify different topics the author has tweeted about."""
|
110 |
all_tweets = [tweet['content'] for tweet in self.tweets]
|
111 |
+
if not all_tweets:
|
112 |
+
return []
|
113 |
+
|
114 |
+
n_topics = n_topics or min(5, len(all_tweets) // 10)
|
115 |
tfidf_matrix = self.vectorizer.fit_transform(all_tweets)
|
116 |
nmf_model = NMF(n_components=n_topics, random_state=1)
|
117 |
nmf_model.fit(tfidf_matrix)
|
|
|
126 |
"""Estimate the number of tokens in the given text."""
|
127 |
return len(text.split())
|
128 |
|
129 |
+
def generate_tweet(self, context="", sample_size=3):
|
130 |
+
"""Generate a new tweet by sampling random tweets and avoiding repetition."""
|
131 |
+
if not self.tweets:
|
132 |
+
return "Error: No tweets available for generation."
|
133 |
+
|
134 |
+
# Randomly sample unique tweets
|
135 |
+
available_tweets = [tweet for tweet in self.tweets if tweet['content'] not in self.used_tweets]
|
136 |
+
if len(available_tweets) < sample_size:
|
137 |
+
self.used_tweets.clear() # Reset used tweets if all have been used
|
138 |
+
available_tweets = self.tweets
|
139 |
+
|
140 |
+
sampled_tweets = random.sample(available_tweets, sample_size)
|
141 |
+
sampled_contents = [tweet['content'] for tweet in sampled_tweets]
|
142 |
+
|
143 |
+
# Update the used tweets tracker
|
144 |
+
self.used_tweets.update(sampled_contents)
|
145 |
+
|
146 |
+
# Truncate personality profile to avoid token overflow
|
147 |
+
personality_profile_excerpt = self.personality_profile[:400] if len(self.personality_profile) > 400 else self.personality_profile
|
148 |
|
149 |
+
# Construct the prompt
|
150 |
prompt = f"""Based on this personality profile:
|
151 |
{personality_profile_excerpt}
|
152 |
Current context or topic (if any):
|
153 |
{context}
|
|
|
|
|
154 |
Tweets for context:
|
155 |
+
{', '.join(sampled_contents)}
|
156 |
**Only generate the tweet. Do not include analysis, explanation, or any other content.**
|
157 |
"""
|
158 |
try:
|
|
|
168 |
tweet = response.choices[0].message.content.strip()
|
169 |
return tweet
|
170 |
except Exception as e:
|
171 |
+
return f"Error generating tweet: {str(e)}"
|
|