Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -42,51 +42,48 @@ if uploaded_file is not None:
|
|
42 |
|
43 |
# Step 4: Fine-tune a model on the extracted tweets
|
44 |
def fine_tune_model(tweets):
|
45 |
-
|
46 |
# Convert tweets to a DataFrame and Dataset
|
47 |
df = pd.DataFrame(tweets, columns=["text"])
|
48 |
tweet_dataset = Dataset.from_pandas(df)
|
49 |
|
50 |
-
|
51 |
model_name = "gpt2" # Replace with a suitable model if needed
|
52 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
53 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
54 |
|
55 |
-
|
56 |
-
tokenizer.pad_token = tokenizer.eos_token # Use eos_token as pad_token
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
|
62 |
-
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
|
81 |
-
|
82 |
-
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
return model, tokenizer
|
89 |
|
|
|
90 |
|
91 |
# Trigger fine-tuning and notify user
|
92 |
with st.spinner("Fine-tuning model..."):
|
|
|
42 |
|
43 |
# Step 4: Fine-tune a model on the extracted tweets
|
44 |
def fine_tune_model(tweets):
|
|
|
45 |
# Convert tweets to a DataFrame and Dataset
|
46 |
df = pd.DataFrame(tweets, columns=["text"])
|
47 |
tweet_dataset = Dataset.from_pandas(df)
|
48 |
|
49 |
+
# Load model and tokenizer
|
50 |
model_name = "gpt2" # Replace with a suitable model if needed
|
51 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
52 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
53 |
|
54 |
+
tokenizer.pad_token = tokenizer.eos_token
|
|
|
55 |
|
56 |
+
# Tokenize the dataset
|
57 |
+
def tokenize_function(examples):
|
58 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=128)
|
59 |
|
60 |
+
tokenized_tweets = tweet_dataset.map(tokenize_function, batched=True)
|
61 |
|
62 |
+
# Training arguments
|
63 |
+
training_args = TrainingArguments(
|
64 |
+
output_dir="./fine_tuned_tweet_model",
|
65 |
+
per_device_train_batch_size=4,
|
66 |
+
num_train_epochs=3,
|
67 |
+
save_steps=10_000,
|
68 |
+
save_total_limit=1,
|
69 |
+
logging_dir='./logs',
|
70 |
+
)
|
71 |
|
72 |
+
# Initialize the Trainer
|
73 |
+
trainer = Trainer(
|
74 |
+
model=model,
|
75 |
+
args=training_args,
|
76 |
+
train_dataset=tokenized_tweets,
|
77 |
+
)
|
78 |
|
79 |
+
# Fine-tune the model
|
80 |
+
trainer.train()
|
81 |
|
82 |
+
# Save the fine-tuned model
|
83 |
+
model.save_pretrained("fine_tuned_tweet_model")
|
84 |
+
tokenizer.save_pretrained("fine_tuned_tweet_model")
|
|
|
|
|
85 |
|
86 |
+
return model, tokenizer
|
87 |
|
88 |
# Trigger fine-tuning and notify user
|
89 |
with st.spinner("Fine-tuning model..."):
|